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Chapter 0

Preface

Graph theory and linear algebra are two beautiful fields of mathematics and
spectral graph theory lies in their intersection. More exactly, spectral graph
theory deals with the properties of a graph in relationship to the eigenvalues
and eigenvectors of some associated matrix.

First, in chapter 1 we will collect the preliminaries of graph and matrix the-
ory and introduce the usual asymptotic notations. Then in chapter 2 we
will define the different kinds of matrices of a graph, namely the adjacency
matrix, the Laplacian and the normalized Laplacian. After some basic facts
we will describe different methods that exist in spectral graph theory and
give some applications.

In chapter 3 we will state the Cauchy-Schwarz and other inequalities. We
will also discover spectral techniques using the Cauchy-Schwarz Inequality.
After that we are ready to discuss pseudo-random graphs.

Pseudo-random graphs are graphs which behave like random graphs. In
chapter 4 we will define the concept of pseudo-random graphs via eigenval-
ues. There are two approaches to do that. One considers the spectrum of the
adjacency matrix and the other the spectrum of the normalized Laplacian.
The first approach is mostly easier to apply but only adaptable for d-regular
graphs. We will then generalize some statements of the survey paper about
pseudo-random graphs by Krivelevitch and Sudakov [18] for the normalized
Laplacian.

Finally, in chapter 5 we will discuss Turán’s Theorem and some attempts to
extend this theorem for pseudo-random graphs.
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Chapter 1

Preliminaries

1.1 Graph Theory

Most of the material of graph theory is taken from West [30] and Jukna [15].

A (simple) graph is a pair G = (V,E) consisting of a set V , whose elements
are called vertices, and a family E of 2-element subsets of V , whose members
are called edges. A directed graph is pair G = (V,E) consisting of a set V
(vertices) and a set E (edges) of ordered pairs of V . The first vertex of the
ordered pair is the tail of the edge and the second is the head ; together they
are called endpoints. In the following the concept of directed graph is rarely
needed. We continue now the discussion about (simple) graphs.

A subgraph of G = (V,E) is a pair H = (W,F ) such that W ⊆ V, F ⊆ E.
An induced subgraph of G = (V,E) is a set of vertices W and all edges from
G which have both endpoints in W ; the induced subgraph of G spanned by
the vertices is denoted by G[W ].

A vertex v is incident with an edge e if v ∈ e. Two vertices u, v of G are
adjacent, or neighbors, if {u, v} is an edge of G. We denote the set of all
neighbors of u by N(u). We will write u ∼ v if u and v are adjacent. A
vertex which has no neighbors is called isolated. The number du of neighbors
of a vertex u is its degree. A graph is called d-regular if all degrees are d.
The maximum degree of a graph G is denoted by ∆(G) (or simply ∆) and
the minimum degree by δ(G) (or simply δ).
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Lemma 1.1 Let G = (V,E) be a graph. Then

∑

v∈V

dv = 2|E|.

A walk of length k in G is a sequence v0, e1, v1, ..., ek, vk of vertices and edges
such that ei = {vi−1, vi} for all i. A walk without repeated vertices is a path.
A cycle is a closed path, i.e. a path with an edge from the first vertex to
the last one. A component in a graph is a maximal set of vertices such that
there is a path between any two of them. A graph is connected if it consists
of one component. Mutatis mutandis: A directed graph is strongly connected
if there exists a directed path between any two of the vertices.

A Hamiltonian cycle of a graph G = (V,E) is cycle of length n = |V |, i.e.
the cycle goes through all vertices once. A graph is called Hamiltonian if it
consists a Hamiltonian cycle.

An independent set in a graph is a set of vertices with no edges between
them. The greatest integer r such that G contains an independent set of size
r is the independence number of G, and is denoted by α(G).

A complete graph or clique is a graph in which every pair of vertices is ad-
jacent. The complete graph on n vertices is denoted by Kn. A graph is
bipartite if its vertex set can be partitioned into two independent sets. The
complete bipartite graph is denoted by Kn,m where n is the size of one part
and m is the size of the other part. The star Sn = K1,n−1 is the complete
bipartite graph on n vertices in which one part has size 1. More generally,
a graph is r-partite if its vertex set can be partitioned into r independent sets.

Lemma 1.2 G is bipartite ⇐⇒ G contains no odd cycle.

Let G be a graph and S a subset of vertices. G − S is the graph obtained
from G by deleting the vertices S (and all edges incident to some vertex from
S). The connectivity of G, written κ(G), is the minimum size of a vertex set
S such that G − S is disconnected. The connectivity of the complete graph
Kn is defined as n−1. A graph G is k-connected if its connectivity is at least k

A disconnecting set of edges is a set F ⊆ E(G) such that G−F has more than
one component. A graph is k-edge-connected if every disconnecting set has
at least k edges. The edge-connectivity of G, written κ′(G), is the minimum
size of a disconnecting set.
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Theorem 1.3 (Whitney) If G is a simple graph, then

κ(G) ≤ κ′(G) ≤ δ(G).

A proper coloring of G is an assignment of colors to each vertex so that adja-
cent vertices receive different colors. The minimum number of colors required
for that is the chromatic number χ(G) of G.

A perfect matching M in a graph G is a set of disjoint edges such that every
vertex is incident to (exactly) one edge from M . Thus, a necessary condition
for the existence of a perfect matching is that there is an even number of
vertices.

Theorem 1.4 (Tutte’s 1-Factor Theorem) A graph G has a perfect match-
ing if and only if the number of odd components of G − S is at most as big
as |S| for every subset S of vertices.

1.2 Matrix Theory

We assume that the reader is familiar with the concepts of a matrix and
vector. One should also be acquainted with the operations on matrices and
vectors, such as addition, multiplication, transposition (denoted by T ), trace
(denoted by tr(·)), inner product and determinant. Here we will only repeat
some facts about the eigenvalues of a matrix. For a more detailed discussion
we refer to the book “Matrix analysis” by Johnson and Horn [26].

We consider m × n matrices over the real numbers. We are mostly looking
at square matrices, i.e. m = n. The vectors v, w are orthogonal (denoted by
v ⊥ w) if their inner product vanishes, i.e. vT w = 0.

1.2.1 Basics about Eigenvalues

Let A be a n × n-matrix. λ ∈ C is called an eigenvalue of A if there exists
a (complex) vector v 6= 0 such that Av = λv. This vector v is called an
eigenvector of A associated with the eigenvalue λ. The set of all eigenvalues
of A is called the spectrum of A, denoted by spec(A).

Lemma 1.5 Let p(·) be a given polynomial. If λ is an eigenvalue of A, while
x is an associated eigenvector, then p(λ) is an eigenvalue of the matrix p(A)
and x is an eigenvector of p(A) associated with p(λ).
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The characteristic polynomial of A is defined by

χA(t) := det(tI − A).

Facts: The roots of the characteristic polynomial χA are exactly the eigen-
values of A. By the Fundamental Theorem of Algebra we know that every
polynomial with degree n has exactly n complex roots (counted with multi-
plicities). So every matrix has n (complex) eigenvalues (counted with multi-
plicities).

Lemma 1.6 Let A be a n × n-matrix with eigenvalues λ1, ..., λn. Then

tr(A) =
n∑

i=1

λi.

1.2.2 Symmetric Matrices

A square matrix A over the real numbers is symmetric if AT = A, i.e. the
ith column of A is equal to the ith row of A. (For complex matrices there is
the corresponding concept of Hermitian, which we will not use further.)

Lemma 1.7 Let A be a symmetric real matrix. Suppose v and w are eigen-
vectors of A associated with the eigenvalues λ and µ respectively. If λ 6= µ
then v ⊥ w, i.e. v and w are orthogonal.

Theorem 1.8 (Spectral Theorem) Let A be a n× n symmetric real ma-
trix. Then there are n pairwise orthogonal (real) eigenvectors vi of A associ-
ated with real eigenvalues of A.

We can order the eigenvalues of a symmetric matrix because all eigenvalues
are real by the Spectral Theorem 1.8. We will denote the eigenvalues of a
symmetric matrix A by λ1(A) ≤ . . . ≤ λn(A). Some of these eigenvalues
can be equal; we say that those eigenvalues have multiplicity greater than 1.
Thus we will write the spectrum of A also in the form λ̄

[m1]
1 , . . . , λ̄

[mk]
k , where

λ̄i is an eigenvalue with multiplicity mi.

The eigenvalues of symmetric matrices can be expressed as an extremal value
of some term, i.e. they are the maximum, minimum of some function:
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Theorem 1.9 (Rayleigh-Ritz) Let A be an n× n real symmetric matrix,
and let λ1 ≤ λ2 ≤ ... ≤ λn be the eigenvalues of A. Then

λn = max
x6=0

xT Ax

xT x
= max

xT x=1
xT Ax,

λ1 = min
x6=0

xT Ax

xT x
= min

xT x=1
xT Ax.

The expression R(A; x) := xT Ax/xT x is called the Rayleigh quotient. The
theorem above gives us an extremal characterization of the largest and small-
est eigenvalue of a symmetric matrix. There exists a more general theorem:

Lemma 1.10 Let A be a n × n real symmetric matrix with eigenvalues
λ1 ≤ λ2 ≤ ... ≤ λn and corresponding eigenvectors v1, v2, ..., vn such that
they are pairwise orthogonal. Then for all integers 1 ≤ k ≤ n − 1:

λk+1 = min
x6=0

x⊥v1,...,vk

xT Ax

xT x
= min

xT x=1
x⊥v1,...,vk

xT Ax,

λn−k = max
x6=0

x⊥vn,...,vn−k+1

xT Ax

xT x
= max

xT x=1
x⊥vn,...,vn−k+1

xT Ax.

Eigenvectors must be known explicitly to apply this theorem. If one does
not known the eigenvectors, one can use the following theorem:

Theorem 1.11 (Courant-Fischer) Let A be an n×n real symmetric ma-
trix with eigenvalues λ1 ≤ λ2 ≤ ... ≤ λn. Then for a given integer k such
that 1 ≤ k ≤ n:

λk = min
w1,...,wn−k∈Rn

max
x∈R

n−0
x⊥w1,...,wn−k

xT Ax

xT x
;

λk = max
w1,...,wk−1∈Rn

min
x∈R

n−0
x⊥w1,...,wk−1

xT Ax

xT x
.

1.2.3 Positive Semidefinite Matrices

An n × n symmetric matrix is said to be positive semidefinite if xT Ax ≥ 0
for all x ∈ R

n

Theorem 1.12 (positive semidefinite matrices) Let A be a real sym-
metric matrix. The following conditions are equivalent:

• The matrix A is positive semidefinite.

• All eigenvalues of A are nonnegative.
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1.3 Asymptotic notations

Some of the results are asymptotic, and we use the standard asymptotic no-
tation: Let f and g be two functions over R. We write f = O(g) if there are
constants C > 0, n0 ∈ R such that |f(n)| ≤ C|g(n)| for all n ≥ n0. We write
f = o(g) or equivalently f � g if f/g → 0 as n → ∞. We write f = Ω(g) if
g = O(f), i.e. there are constants C > 0, n0 ∈ R such that |f(n)| ≥ C|g(n)|
for all n ≥ n0. Finally we write f = Θ(g) if f = O(g) and f = Ω(g).

The variable n will most of the time be the number of vertices of a graph.
So we will look at families of graphs with more and more vertices and make
there some asymptotic assertions.
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Chapter 2

Spectral graph theory

In the following chapter we will first define the different kinds of matrices
of a graph, namely the adjacency matrix, the Laplacian and the normalized
Laplacian. These definitions may be found in section 2.1 where we will also
state and prove some basic facts that follow naturally. Sections 2.2 till 2.8
will deal with the different methods that exist in spectral graph theory. We
will describe these methods, give some applications and show for which kinds
of matrices one may use a specific method. In the last section we will mention
some other stuff about spectral graph theory.

2.1 Definitions and Basic Facts

In the following we will often consider a graph on n vertices. To simplify
notations, we will suggested that these vertices are {1, 2, ..., n}.

2.1.1 The Adjacency Matrix

Definiton 2.1 (adjacency matrix) Let G be a simple graph on n vertices.
The adjacency matrix A(G) is a matrix of dimension n× n. The ij-th entry
of A(G) is 1 if the vertices i and j are connected by an edge, otherwise it is
0, i.e.

A(G)ij :=

{
1, if i ∼ j;
0, otherwise.

The adjacency matrix of a graph contains the same information as the graph
itself. So it is a possibility to store a graph in a computer.
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([4], p.164f): Two graphs X and Y are isomorphic if there is a bijection,
φ say, from V (X) to V (Y ) such that x ∼ y in X if and only if φ(x) ∼ φ(y)
in Y . We say that φ is an isomorphism from X to Y . Thus, an isomorphism
can be viewed as an relabeling of the vertices. It is normally appropriate
to treat isomorphic graphs as if they were equal. The adjacency matrix
of two isomorphic graphs X,Y is in general not the same, but there is a
permutation matrix Φ such that ΦT A(X)Φ = A(Y ). Since permutation
matrices are orthogonal, ΦT = Φ−1, the characteristic polynomial of A(X)
and A(Y ) is the same, i.e.

χA(Y )(t) = det(tI − A(Y )) = det(tΦ−1IΦ − Φ−1A(X)Φ)

= det(Φ−1) det(tI − A(X)) det(Φ) = χA(X)(t).

Thus, also the eigenvalues of the adjacency matrix are indifferent under iso-
morphic transformations.

Definiton 2.2 (adjacency eigenvalues) The eigenvalues of A(G) are called
the adjacency eigenvalues of G. The set of all the adjacency eigenvalues are
called the (adjacency) spectrum of the graph G.

Example 2.3 We look at the graph G = K3:

adjacency matrix:





0 1 1
1 0 1
1 1 0





characteristic polynomial:

χ(x) = x3 − 3x − 2

adjacency eigenvalues:

2, 1, 1

We notice that A(G) is a symmetric real-valued matrix. So we know from the
Spectral Theorem 1.8 that all the adjacency eigenvalues are real and we have
n such eigenvalues (counted with multiplicity). So we can assume that the
eigenvalues of a graph G are ordered λ1 ≤ λ2 ≤ . . . ≤ λn. We note that this
is an abbreviated notation for the adjacency eigenvalues, i.e. λi = λi(A(G)).

Next, we determine the range of the adjacency eigenvalues.

Lemma 2.4 ([3] p.51, [29] p.6) Let G be a graph on n vertices.
i) The maximum eigenvalue of G lies between the average and the maximum
degree of G, i.e.

d̄ ≤ λn ≤ ∆.
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ii) The range of all the eigenvalues of a graph is

−∆ ≤ λ1 ≤ λ2 ≤ . . . ≤ λn ≤ ∆.

Proof: i) We will show that the Rayleigh quotient for some special vector is
greater than d̄. This suffices to get the first inequality, because the maximum
of the Rayleigh quotient is λn (cf. Rayleigh-Ritz Theorem 1.9). The other
inequality in i) follows from the second point.
Set x = (1, 1, ..., 1)T . The Rayleigh quotient for this vector equals:

R(A; x) =
xT Ax

xT x
=

∑n
i=1

∑n
j=1 xiAijxj

∑n
i=1 x2

i

=

∑n
i=1

∑

j:j∼i 1

n
=

∑n
i=1 di

n
= d̄.

(1)
ii) We have to show that the absolute value of every eigenvalue is less than
or equal to the maximum degree. Let u be an eigenvector corresponding to
the eigenvalue λ, and let uj denote the entry with the largest absolute value.
We have

|λ||uj| = |λuj| = |(Au)j| =

∣
∣
∣
∣
∣

∑

i∼j

ui

∣
∣
∣
∣
∣
≤
∑

i∼j

|ui| ≤ dj|uj| ≤ ∆|uj|.

Thus we have |λ| ≤ ∆ as required. �

Corollary 2.5 ([3], p.14) Let G be a d-regular graph. Then:
i) λn = d is the greatest eigenvalue with eigenvector (1, 1, ..., 1)T .
ii) For any eigenvalue λi of G, we have |λi| ≤ d.

Proof: We note that the average degree in a d-regular graph is d and also
the maximum degree is d. So the greatest eigenvalue λn has to be d by
Lemma 2.4 part i). Moreover, d is an adjacency eigenvalue with associated
eigenvector (1, . . . , 1)T because every row of A(G) contains exactly d ones.
The second part follows immediately by Lemma 2.4 part ii). �

Remark 2.6 Two graphs which have the same spectrum are called iso-
spectra. But the spectra of a graph G does not characterize the graph
uniquely. There are non-isomorphic graphs with the same spectra. Look
for example at the following two graphs:
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0 1 0 1 0
1 0 1 0 0
0 1 0 1 0
1 0 1 0 0
0 0 0 0 0

















0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
1 1 1 1 0









The characteristic polynomial of both of this matrices is equal to

χ(x) = x5 − 4x3

So the adjacency eigenvalues of these two graphs are 0 with multiplicity 3, 2
and −2, i.e.

spec = 0[3], 2,−2

We notice that the graph on the left is disconnected while the graph on
the right is connected. So this pair of iso-spectra graphs tells us that the
connectivity (in general) is not deducible from the adjacency spectrum.

2.1.2 The Laplacian

Definiton 2.7 (Laplacian) Let G be a graph. We denote the diagonal
matrix with the degrees as diagonal elements by D(G). The Laplacian matrix
or Laplacian L(G) is the difference between D(G) and the adjacency matrix
A(G), i.e.

L(G)ij :=







di, if i = j;
−1, if i ∼ j;
0, otherwise.

There is another view of the Laplacian matrix. We can think of the Laplacian
as the sum of some matrices L(u, v) which look like the expansion of the
Laplacian of an edge, i.e.
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L(u, v) :=












. . . . .
.

1 · · · −1
...

...
−1 · · · −1

. .
. . . .












where the diagonal elements corresponding to u and v are 1, the (u, v) and
(v, u) entries are -1 and the rest is fill up with 0.

Lemma 2.8 ([27]) The Laplacian matrix is equal to the following sum:

L(G) =
∑

{u,v}∈E(G)

L(u, v)

Proof: First, we look at the diagonal elements:




∑

{u,v}∈E(G)

L(u, v)





ii

=
∑

{u,v}∈E(G)

L(u, v)ii = |N(i)| = di = L(G)ii.

The non-diagonal elements are −1 if there is an edge and 0 otherwise. This
holds for the Laplacian and for the sum of these matrices. �

Lemma 2.9 The Laplacian matrix is positive semidefinite, i.e. xT L(G)x ≥
0 for all vectors x.

Proof: Let x be any vector. First, we check that the matrix L(u, v) is
positive semidefinite:

xT L(u, v)x = x2
u + x2

v − 2xuxv = (xu − xv)
2 ≥ 0.

Now, we will look at the Laplacian matrix:

xT L(G)x = xT




∑

{u,v}∈E(G)

L(u, v)



 x =
∑

{u,v}∈E(G)

xT L(u, v)x

=
∑

{u,v}∈E(G)

(xu − xv)
2 ≥ 0. (2)

�
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Definiton 2.10 (Laplacian eigenvalues) The eigenvalues of L(G) are called
the Laplacian eigenvalues. The set of all the Laplacian eigenvalues are called
the (Laplacian) spectrum of the graph G.

Example 2.11 We look at the graph G = K3:

Laplacian matrix:





2 −1 −1
−1 2 −1
−1 −1 2





characteristic polynomial:

χ(x) = x3 − 6x2 + 9x

Laplacian eigenvalues:

0, 3, 3

The vector v = (1, 1, ..., 1)T is always an eigenvector of the eigenvalue 0.
We know that all the Laplacian eigenvalues are nonnegative because the
Laplacian is positive semidefinite. We will bound the Laplacian eigenvalues
from above in the next lemma.

Lemma 2.12 ([27]) Let G be a graph on n vertices with Laplacian eigen-
values λ1 = 0 ≤ λ2 ≤ ... ≤ λn and maximum degree ∆. Then

0 ≤ λi ≤ 2∆.

And
λn ≥ ∆.

Proof: All eigenvalues are nonnegative by Theorem 1.12 and Lemma 2.9.

Let u be an eigenvector corresponding to the eigenvalue λ, and let uj denote
the entry with the largest absolute value. We have

|λ||uj| = |λuj| =

∣
∣
∣
∣
∣
djuj −

∑

i∼j

ui

∣
∣
∣
∣
∣
≤ dj|uj| +

∑

i∼j

|ui| ≤ 2dj|uj| ≤ 2∆|uj|.

Thus, we have |λ| ≤ 2∆ as required.

Let j be the vertex with maximal degree, i.e. dj = ∆. We define the
characteristic vector x:

xi :=

{
1, if i = j;
0, otherwise.

18



Now, the desired inequality follows:

λn
(Thm. 1.9)

= max
x̃6=0

x̃T x̃

x̃T x̃
≥ xT Lx

xT x

(2)
=

∑

{u,v}∈E(xu − xv)
2

1
= ∆.

�

2.1.3 The normalized Laplacian

The normalized Laplacian matrix is the Laplacian matrix with a normaliza-
tion of the degree matrix. This normalization will force the eigenvalues to
be in the interval [0, 2].

Suppose G is a graph with no isolated vertices. Then the diagonal matrices
D1/2 and D−1/2 are uniquely determined by taking the square root of each
entry and the (−1/2)-power of each entry, respectively. If G has an isolated
vertex i then D1/2 and D−1/2 are not uniquely determined because di = 0.

Definiton 2.13 (normalized Laplacian) Let G be a graph without iso-
lated vertices. The normalized Laplacian of G is the matrix

L(G) = D−1/2LD−1/2

i.e.

L(G)ij :=







1, if i = j and i 6= 0;
− 1√

didj
, if i ∼ j;

0, otherwise.

Remark 2.14 i) The following equality holds

L(G) = D−1/2LD−1/2 = I − D−1/2AD−1/2. (3)

ii) Let us for a moment look at a graph with isolated vertices. Now we define
the matrix D−1/2 as the diagonal matrix with entries 1√

dj
if dj 6= 0 and 0

otherwise. We can now extend the definition of the normalized Laplacian
to graphs with isolalted vertices, i.e. L(G) = D−1/2LD−1/2. However, the
problem is now that equation (3) is not true in general. To see this, we let i
be an isolated vertex. Then the ith row and ith column of D−1/2 consisting
only zeros. So

L(G)ii = (D−1/2LD−1/2)ii = 0

but
(I − D−1/2AD−1/2)ii = 1.
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This problem occurs in Chung’s book [6] as an oversight. To avoid this dif-
ficulty we make the following convention.

Convention: Every graph in the following has no isolated vertices.

Definiton 2.15 (normalized Laplacian eigenvalues) The eigenvalues of
the normalized Laplacian are called the normalized Laplacian eigenvalues.

Since L is symmetric, its eigenvalues are real and we can assume that they
are ordered, i.e. λ1 ≤ λ2 ≤ . . . ≤ λn. (But we do not know yet if they are
negative or not.) (Note that we count the eigenvalues from 1 to n and not
from 0 to n − 1 as Chung does.)

Example 2.16 We look at the graph G = K3:

norm. Laplacian matrix:





1 −1
2

−1
2

−1
2

1 −1
2

−1
2

−1
2

1





characteristic polynomial:

χ(x) = x3 − 3x2 +
9

4
x

norm. Laplacian eigenval.:

0,
3

2
,
3

2

The vector D1/21 = (
√

d1, . . . ,
√

dn)T is in general an eigenvector to the
eigenvalue 0:

L · D1/21 = D−1/2LD−1/2 · D1/21 = D−1/2L1 = 0.

To get general bounds for the eigenvalues we look at the Rayleigh quotient.
Let x be any real vector and y = D(G)−1/2x.

xTLx

xT x
=

xT D−1/2LD−1/2x

(D1/2D−1/2x)T (D1/2D−1/2x)
=

yT Ly

(D1/2y)T (D1/2y)
.

Here we have used some tiny facts about linear algebra: Diagonal matrices
are symmetric, i.e. (D−1/2)T = D−1/2; matrix multiplication is associative
and (Mz)T = zT MT . Now, we continue the calculation

R(L; x) =
xTLx

xT x

(2)
=

∑

{u,v}∈E(yu − yv)
2

∑

u∈V duy2
u

(4)

Lemma 2.17 The normalized Laplacian L is positive semidefinite.
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Proof: The Rayleigh quotient is always nonnegative by (4). Then also
xTLx ≥ 0 for all x, i.e. L is positive semidefinite. �

Lemma 2.18 ([6], p.6) Let G be a graph on n vertices with normalized
Laplacian eigenvalues λ1 = 0 ≤ λ2 ≤ ... ≤ λn. Then

0 ≤ λi ≤ 2

And
λn ≥ n

n − 1

Proof: All the eigenvalues are nonnegative by Lemma 2.17 and Theorem
1.12. We have seen before that 0 is an eigenvalue with eigenvector D1/21. For
the upper bound on the eigenvalues we are looking at the Rayleigh quotient
as it was derived in (4) and then use Lemma 1.11:

∑

i∼j(xi − xj)
2

∑

i dix2
i

≤
∑

i∼j 2x2
i + 2x2

j
∑

i dix2
i

=
2
∑

i dix
2
i

∑

i dix2
i

≤ 2.

The trace of the normalized Laplacian is equal to n. Thus, by Lemma 1.6
also the sum of all eigenvalues has to be n. The desired inequality follows
from the following calculation:

n =
n∑

i=1

λi = 0 +
n∑

i=2

λi ≤ (n − 1)λn.

�

2.1.4 Relations between the Adjacency and the Lapla-
cian

For all three kinds of eigenvalues we know that the spectrum of G is the
union of the spectra of the components of G. This will let us assume in some
theorems without loss of generality (w.l.o.g.) that G is connected.

Lemma 2.19 Let G be a graph with components V1, ..., Vk. Then

spec(A(G)) =
k⋃

i=1

spec(A(G[Vi])),

spec(L(G)) =
k⋃

i=1

spec(L(G[Vi])),

spec(L(G)) =
k⋃

i=1

spec(L(G[Vi])),

where G[Vi] denotes the induced subgraph of G on the vertices Vi.
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Proof: After a relabeling of the vertices the three matrices A(G), L(G) and
L(G) are block matrices with nonzero blocks in the diagonal and all other
blocks are zero-blocks. The non-zero blocks are corresponding to the associ-
ated matrices of one of the components of G. By a straightforward calculation
one can see that the spectrum of such a (diagonal) block matrix is the union
of the spectra of its blocks. �

We will list the three different kinds of eigenvalues in the following table.

matrix eigenvalues
adjacency A −∆ ≤ λi(A)) ≤ ∆
Laplacian L = D − A 0 ≤ λi(L) ≤ 2∆
normalized Laplacian L = D−1/2LD−1/2 0 ≤ λi(L) ≤ 2

We have now defined three different matrices and three different types of
eigenvalues. There are relations among them. The simplest case is when we
look at d-regular graphs. Then the knowledge of any of the three spectra
would provide us the others via linear functions.

Theorem 2.20 (Relations for d-regular graphs) Let G be a d-regular
graph on n vertices. Then

λi(L(G)) = d − λn−i+1(A(G)),

λi(L(G)) = λi(L(G))/d,

λi(I − L(G)) = λi(A(G))/d.

Proof: The degree matrix D(G) is equal to the d-multiple of the identity
matrix. So every eigenvector of the adjacency matrix is an eigenvector of the
Laplacian (and also of the normalized Laplacian). The indices are shifted
because we have to preserve the order. �

Lemma 2.21 Let G be a graph on n vertices with largest degree ∆, adja-
cency matrix A, Laplacian L and normalized Laplacian L. Then

∆ − λn(A) ≤ λn(L) ≤ ∆ − λ1(A).

λi(L)δ ≤ λi(L) ≤ λi(L)∆.

Proof: We look at the Rayleigh quotient:

R(L; x) =
xT Lx

xT x
=

xT Dx

xT x
− xT Ax

xT x
= R(D; x) − R(A; x).
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Then we conclude

λn = max
x6=0

R(L; x) ≤ max
x6=0

R(D; x) − min
x6=0

R(A; x) = ∆ − λ1(A).

Let x̃ 6= 0 be the eigenvector of D associated with the eigenvalue ∆. Then

λn(L) = max
x6=0

R(L; x) ≥ R(L; x̃) = R(D; x̃) − R(A; x̃) ≥ ∆ − λn(A).

For the second line let us first have a look at the Rayleigh quotient:

R(L; D−1/2x)
(4)
=

∑

i∼j(xi − xj)
2

∑

i dix2
i

≥
∑

i∼j(xi − xj)
2

∆
∑

i x
2
i

(2)
=

R(L; x)

∆
.

Now, we use the characterization of the eigenvalues given by the Courant-
Fisher Theorem.

λk(L) = min
w1,...,wn−k∈Rn

max
x∈R

n−0
x⊥w1,...,wn−k

R(L; x)

≤ ∆ min
w1,...,wn−k∈Rn

max
x∈R

n−0
x⊥w1,...,wn−k

R(L; D−1/2x).

We note that:
x ⊥ w, x 6= 0 ⇐⇒ x′ ⊥ w′, x′ 6= 0

where x′ = D−1/2x and w′ = D1/2w. Also we know that D1/2 is invertible.
So we can continue

λk(L) ≤ ∆ min
w′

1
,...,w′

n−k∈Rn
max

x′∈R
n−0

x′⊥w′

1
,...,w′

n−k

R(L; x′) = ∆λk(L).

In the same way we get λk(L) ≥ δλk(L). �

2.2 The theory of nonnegative matrices

Definiton 2.22 (nonnegative, positive matrices) A matrix M is called
nonnegative, if all elements are nonnegative. A matrix M is called positive,
if all elements are positive.

The adjacency matrix is a nonnegative matrix but it is not positive because
the diagonal entries are zero. Perron’s classical Theorem (see e.g. Gant-
macher [11], p.398, Satz 1) deals with positive matrices. Thus we cannot
apply this theorem to the adjacency matrix. There is a generalization of this
theorem which is called Frobenius’s Theorem. It deals with indecomposable
(=unzerlegbaren) matrices:
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Definiton 2.23 (incomposable/decomposable) ([11], p. 395f) A ma-
trix M is called decomposable if it has (up to a permutation of the rows and
columns) the following form

M =

(
B 0
C D

)

where B and D are square matrices. Otherwise the matrix M is called
indecomposable.

The meaning of this definition is the following: We associate a directed
graph GM to the matrix M such that there is a directed edge from i to
j iff Mij > 0. Clearly, the matrix M is indecomposable iff the graph GM is
strongly connected. We note that a symmetric matrix M is indecomposable
iff the associated graph GM is connected.

Example 2.24 Look at the following matrix M and the associated directed
graph GM :





1 1 0
1 0 0
1 1 1





1

3

2

The matrix M is decomposable because of the the decomposition shown
on the left. The graph GM is not strongly connected, because there is no
(directed) path from 1 to 3.

Theorem 2.25 (Perron-Frobenius) Suppose M is a real nonnegative in-
decomposable matrix. Then:

1. There exists a positive real simple eigenvalue of M and an associated
eigenvector whose entries are all positive. Let λPF be such an eigen-
value.
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2. All eigenvalues λ of M satisfy |λ| ≤ λPF , i.e. λPF is the largest eigen-
value (in absolute value). In particular λPF is unique.

3. If θ is an eigenvalue of M and |θ| = λPF , then θ/λPF is an mth root of
unity and e2πir/mλPF is an eigenvalue of M for all r.

Remark 2.26 i) A simple eigenvalue is an eigenvalue with multiplicity 1.

ii) The eigenvalue λPF is called the Perron-Frobenius eigenvalue of M .

iii) Let M be some real nonnegative symmetric indecomposable matrix and
assume we have a positive eigenvector v for some eigenvalue λ. We claim
that the eigenvalue λ is equal to the Perron-Frobenius eigenvalue. Otherwise
assume λPF (A(G)) 6= λ. There is a positive eigenvector vPF corresponding
to the Perron-Frobenius eigenvalue. Then vT vPF > 0, i.e. they are not
orthogonal despite they correspond to different eigenvalues. Contradiction
to Lemma 1.7.

We will now look at some applications of Theorem 2.25 to spectral graph
theory. The following lemma contains two statements which we know already.
The first statement is one part from Lemma 2.5 and the second statement
one part from Lemma 2.12. However, the method used here to derive the
statement is another.

Lemma 2.27 i) For d-regular graphs G on n vertices:

|λi(A(G))| ≤ d, 1 ≤ i ≤ n.

If G is also connected then d is a simple eigenvalue.
ii) For graphs G on n vertices:

λi(L(G)) ≤ 2∆, 1 ≤ i ≤ n.

Proof: i) The adjacency matrix is real and nonnegative. W.l.o.g. we can
assume that the graph G is connected. Then the adjacency matrix of G is
also indecomposable. We know that the vector (1, 1, ..., 1)T is an eigenvector
to the eigenvalue d. By the remark above, we know that λPF = d. The
second part in the theorem gives us the desired inequality.

ii) (Mohar [22], p.10) W.l.o.g. we can assume that the graph G is con-
nected. Then the matrix M := ∆I −L(G), where I is the identity matrix, is
real nonnegative and indecomposable. We know that the vector (1, 1, ..., 1)T

is an eigenvector to the eigenvalue ∆ of M . By the remark above we have
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λPF = ∆. Perron-Frobenius Theorem implies that ∆ is greater or equal
than the absolute value of all the eigenvalues of M , i.e. ∆ ≥ |∆ − λi|. In
particular, ∆ ≥ λi − ∆ as claimed. �

The Perron-Frobenius Theorem 2.25 leads to a very interesting theorem that
characterizes bipartite graphs by their adjacency spectrum:

Theorem 2.28 (eigenvalues of bipartite graphs) ([4], p.178) Let G be
a connected graph with adjacency matrix A and adjacency eigenvalues λ1 ≤
λ2 ≤ ... ≤ λn. Then the following are equivalent:

1. G is bipartite

2. The spectrum of the adjacency is symmetric about the origin, i.e. λi =
−λn−i+1, for all 1 ≤ i ≤ n.

3. λ1 = −λn.

Proof: 1 =⇒ 2: Suppose G is bipartite. Then the adjacency matrix looks
like this (perhaps after a permutation of the vertices):

A =

(
0 B

BT 0

)

where B is some square matrix. If the partitioned vector (x, y) is an eigenvec-
tor of A with eigenvalue θ, then (x,−y) is an eigenvector of A with eigenvalue
−θ. This means that the spectrum is symmetric about the origin.
2 =⇒ 3: clear.
3 =⇒ 1: Suppose we have a graph with adjacency eigenvalues λi such that
λn = −λ1 and let v and w denote an eigenvector to the eigenvalue λn and
λ1, respectively. These two eigenvectors are orthogonal by Lemma 1.7. The
largest eigenvalue of A2 is λ2

1 = λ2
n because of Lemma 1.5. If the matrix

A2 has an Perron-Frobenius eigenvalue then it would be λ2
1 = λ2

n. This
eigenvalue is not simple because it has two linearly independent eigenvectors
v, w. This would be a contradiction to the first point of the Perron-Frobenius
Theorem. Since A2 is real and nonnegative it has to be decomposable. So
we can write
(

B 0
C D

)

= A2 =:

(
A1 A2

AT
2 A3

)2

=

(
A2

1 + A2A
T
2 A1A2 + A2A3

AT
2 A1 + A3A

T
2 AT

2 A2 + A2
3

)

Specially
A1A2 + A2A3 = 0.

Since G is connected we conclude that A2 6= 0. All these matrices are non-
negative matrices. Thus A1 = 0 and A3 = 0, i.e. G is bipartite. �
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2.3 Trace of a Matrix

In this section we try to connect the trace of the three matrices A(G),L(G),
and L(G) of a graph G to some of the properties/paramters of G. Then we
can also relate these properties/parameters to the eigenvalues of G since by
Lemma 1.6 the trace of a matrix is equal to the sum of its eigenvalues. First
let us look at the adjacency:

Lemma 2.29 ([4], p.165) Let G = (V,E) be a graph with adjacency eigen-
values λ1, ..., λn. Then

n∑

j=1

λi = tr(A(G)) = 0,

n∑

j=1

λ2
i = tr(A2(G)) = 2e,

n∑

j=1

λ3
i = tr(A3(G)) = 6t;

where e is the number of edges and t is the number of triangles, formally

t = |{{a, b, c} ∈ V 3; {a, b} ∈ E, {b, c} ∈ E, {c, a} ∈ E}|.

There is a more general theorem about the number of walks in a graph which
we will mention here:

Theorem 2.30 (Number of Walks) ([4], p.165) Let G be a graph with
adjacency matrix A(G). The number of walks from u to v in G with length
r is (Ar)uv.

By using Theorem 2.30 we can reprove some parts of Theorem 2.28:

Theorem 2.31 The following are equivalent statements about a graph G
on n vertices with adjacent eigenvalues λ1 ≤ ... ≤ λn.

1. G is bipartite

2. The adjacency spectrum is symmetric about the origin, i.e. λi =
−λn−i+1 for all 1 ≤ i ≤ n.

Proof: ([30], p.455) 1 =⇒ 2: See proof of Lemma 2.28.
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2 =⇒ 1: If λi = −λn−i+1, then λ2t−1
i = −λ2t−1

n−i+1 for every positive integer t.
And

n∑

i=1

λ2t−1
i =

1

2

n∑

i=1

(
λ2t−1

i + λ2t−1
n−i+1

)
= 0.

Because
∑

λk
i counts the closed walks of length k in the graph (from each

starting vertex), we get from the above equation, that G does not contain
any closed walk of odd length. So G does not contain an odd cycle, since an
odd cycle is an odd closed walk. Hence G is bipartite by Lemma 1.2. �

We will now look at the trace of the Laplacian:

Lemma 2.32 Let G be a graph on n vertices with Laplacian L. Then

n∑

i=1

λ(L) = tr(L) = vol1(G)

n∑

i=1

λ2(L) = tr(L2) = vol2(G) + vol1(G)

n∑

i=1

λ3(L) = tr(L3) = vol3(G) + 3 vol2(G) − 6t.

where t is (again) the number of triangles in G and

volk(G) =
n∑

i=1

dk
i .

Proof: The diagonal elements of L are the degrees. Thus

tr(L) =
n∑

i=1

di = vol1(G).

We will now calculate the matrix L2.

L2
ij =

n∑

k=1

LikLkj = diLij −
∑

k:k∼i

Lkj.

By distinguish three different cases, we get:

L2
ij =







d2
i + di, if i = j;

−di − dj + codeg(i, j), if i ∼ j;
codeg(i, j), otherwise.
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where codeg(i, j) is the codegree of i and j, i.e. the number of common
neighbors. So we get

tr(L2) =
n∑

i=1

d2
i + di = vol2(G) + vol1(G).

Furthermore, the diagonal elements of L3 are

L3
ii =

n∑

k=1

LikL
2
kj = diL

2
ii −

∑

k:k∼i

L2
ik

= d3
i + d2

i +
∑

k∼i

di + dk − codeg(k, i)

= d3
i + d2

i + d2
i +

∑

k∼i

dk −
∑

k∼i

codeg(k, i)

Finally

tr(L3) =
n∑

k=1

L3
ii = vol3(G) + 2 vol2(G) +

n∑

i=1

∑

k∼i

dk

︸ ︷︷ ︸

=vol2(G)

−
n∑

i=1

∑

k:k∼i

codeg(i, k)

︸ ︷︷ ︸

=6t

.

�

Lemma 2.33 Let G be a graph on n vertices with with normalized Laplacian
L. Then

n∑

i=1

λi(L) = tr(L) = n

n∑

i=1

λ2
i (L) = tr(L2) = n + e−1(G,G)

n∑

i=1

(1 − λi(L))2 = tr((I − L)2) = e−1(G,G)

where

e−1(G,G) =
n∑

i=1

∑

k:k∼i

1

didk

.

Proof: We calculate

n∑

i=1

λ2
i (L) = tr(L2) =

n∑

i=1

n∑

j=1

LijLji =
n∑

i=1

(

1 +
∑

j∼i

1

didj

)

= n + e−1(G,G).
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And

n∑

i=1

(1 − λi(L))2 =
n∑

i=1

1 − 2
n∑

i=1

λi(L) +
n∑

i=1

λi(L)2 = e−1(G,G).

�

Definiton 2.34 (strongly regular graph) A strongly regular graph with
parameters (n, d, η, µ) is a d-regular graph on n vertices in which every pair
of adjacent vertices has exactly η common neighbors and every pair of non-
adjacent vertices has exactly µ common neighbors.

Proposition 2.35 ([18], p.16) Let G be a connected strongly regular graph
with parameters (n, d, η, µ). Then the adjacency eigenvalues of G are: λ1 = d
with multiplicity s1 = 1 and

λ2,3 =
1

2

(

η − µ ±
√

(η − µ)2 + 4(d − µ)
)

with multiplicities

s2,3 =
1

2

(

n − 1 ± (n − 1)(µ − η) − 2d
√

(µ − η)2 + 4(d − µ)

)

.

Proof: We use Theorem 2.30 to compute the matrix A2. The walks of
length 2 from a vertex to itself must go over one of its neighbors. Thus we
have d such walks. A walk of length 2 which connects two different vertices
must go over one of theirs common neighbors. So we have η such walks for
adjacent vertices and µ for non-adjacent vertices respectively. Altogether we
can write:

A2 = (d − µ)I + µJ + (η − µ)A,

where J is the n × n all one matrix and I is the (n × n) identity matrix.

We know that the vector w = (1, 1, ..., 1)T is an eigenvector of A associated
with the eigenvalue d (see Lemma 2.5). Moreover, d is a simple eigenvalue
because G is connected (see Perron-Frobenius Theorem). All other eigenvec-
tors have to be orthogonal to w (see Lemma 1.7). Let v 6= 0 be an eigenvector
with eigenvalue λ which is orthogonal to w, i.e. Jv = 0. Then

λ2v = A2v = (d − µ)v + (η − µ)λv

Since v 6= 0 we get
λ2 − (d − µ) − λ(η − µ) = 0.
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This equation has two solution λ2 and λ3 as defined in the proposition for-
mulation. If we denote by s2 and s3 the respective multiplicities of λ2 and
λ3, we get

1 + s2 + s3 = n, tr(A) = d + s2λ2 + s3λ3 = 0.

Solving the above system of linear equations for s2 and s3 we obtain the
assertion of the proposition. �

Example 2.36 • The 5-cycle C5 is a strongly regular graph with para-
meters (5,2,0,1). So the eigenvalues of C5 are

2,

(

−1 +
√

5

2

)[2]

,

(

−1 −
√

5

2

)[2]

.

• The Petersen graph is a strongly regular graph with paramters (10,3,0,1).
So the eigenvalues are

3, 1[5],−2[4].

Lemma 2.37 Let G be a graph on n vertices and normalized Laplacian
eigenvalues λ1, ..., λn−2, x, y. Suppose we know all eigenvalues but two x, y.
Then we can compute the remaining two eigenvalues in the following manner

x =
1

2
(α +

√

2β − α2)

y =
1

2
(α −

√

2β − α2)

where

α = n −
n−2∑

i=1

λi

β = n + e−1(G,G) −
n−2∑

i=1

λ2
i .

Proof: We solve the following system of equations
∑

λi + x + y = n
∑

λ2
i + x2 + y2 = n + e−1(G,G).

�
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2.4 Eigenvectors

We will construct in this section some explicit eigenvectors for some special
graphs. The first time we see a graph we can look for some special structures,
e.g. twins, which will help us to determine some of the eigenvalues of the
graph.

Definiton 2.38 (twins) Two vertices i, j are called twins if for all other
vertices k

k ∼ i ⇐⇒ k ∼ j.

Lemma 2.39 Let G be a graph and suppose there are two nonadjacent twin
vertices i, j, i.e. N(i) = N(j). We define the (Faria) vector v as

vk :=







1, if k = i;
−1, if k = j;
0, otherwise.

Then

1. λ = 0 is an eigenvalue of the adjacency with eigenvector v;

2. λ = di = dj is an eigenvalue of the Laplacian with eigenvector v;

3. λ = 1 is an eigenvalue of the normalized Laplacian with eigenvector v.

Proof: We get

(Av)k =
∑

l∼k

vl, (Lv)k = dkvk −
∑

l∼k

vl, (Lv)k = vk −
∑

l∼k

vl√
dkdl

.

Since any vertex k 6= i, j is either connected to both i and j or to none
of them, we have (Av)k = (Lv)k = 0. We also obtain (Lv)k = 0 because
di = dj. Clearly (Av)i = (Av)j = 0 since i and j are not adjacent. There
remains two calculations: (Lv)i = di, (Lv)i = 1 and the same for j. �

Lemma 2.40 Let G be a graph and suppose there are two adjacent twin
vertices i, j, i.e. N(i) − {j} = N(j) − {i}. We define the (Faria) vector v as

vk :=







1, if k = i;
−1, if k = j;
0, otherwise.

Then

32



1. λ = −1 is an eigenvalue of the adjacency with eigenvector v;

2. λ = di + 1 = dj + 1 is an eigenvalue of the Laplacian with eigenvector
v;

3. λ = di+1
di

=
dj+1

dj
is an eigenvalue of the normalized Laplacian with

eigenvector v.

Proof: The proof is the same as in Lemma 2.39. �

Example 2.41 We can now easily compute the normalized Laplacian eigen-
values of some special graphs:

• The first example will be the complete graph Kn. Every pair of vertices
are twins in the complete graph which are adjacent and have degree
n−1. By Lemma 2.40 each of these pairs is defining an eigenvector as-
sociated to the eigenvalue n/(n−1) but not all of them are linearly inde-
pendent. We can chose the eigenvectors of the form (1, 0, ...,−1, ..., 0)T

where the jth entry is -1 for all j from 2 to n. We get n-1 such eigenvec-
tors associated to eigenvalue n/(n− 1) which are linearly independent.
Also 0 is an eigenvalue with eigenvector (1, 1, ..., 1)T . So we have de-
rived the whole normalized Laplacian spectrum of Kn.

spec(L(Kn)) = 0,

(
n

n − 1

)[n−1]

.

• Second, we look at the star Sn with n vertices. Every pair of non-
centered vertices are non-adjacent twins. By Lemma 2.39 each of these
pairs is defining an eigenvector associated to the eigenvalue 1 but not
all of them are linearly independent. We can chose the eigenvectors of
the same form as above and get n−2 linearly independent eigenvectors
associated to the eigenvalue 1. Also 0 is an eigenvalue. We receive the
last eigenvalue by looking at the trace (cf. Lemma 2.33). The sum of
all eigenvalues is equal to n. So the last eigenvalue must be 2.

spec(L(Sn)) = 0, 1[n−2], 2.

Example 2.42 We look at some graph G and glue a triangle in some vertex.
The resulting graph is shown in the following picture:
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G

x

y

Now from the Lemma 2.40 we know that this graph has a normalized Lapla-
cian eigenvalue 3/2 with an eigenvector which assigns x to 1 and y to -1 and
all other vertices to 0. This eigenvalue is determined locally.

Next, we look at a generalization of the Lemma 2.39.

Lemma 2.43 Suppose we have two disjoint subsets U+ and U− of the ver-
tices such that

|N(x) ∩ U+| = |N(x) ∩ U−|, ∀x ∈ V.

This means that the number of neighbors of x in U+ is the same as the
number of neighbors of x in U− for all vertices x (also for vertices in U+ and
U−). Then 1 is an eigenvalue of the normalized Laplacian with eigenvector

fx :=







√
dx, x ∈ U+;

−
√

dx, x ∈ U−;
0, otherwise.

Proof: We consider first the following sum for any vertex x:

∑

y:y∼x

fy
√

dydx

=
∑

y∼x,y∈U+

√
dy

√
dydx

−
∑

y∼x,y∈U−

√
dy

√
dydx

=
|N(x) ∩ U+|√

dx

− |N(x) ∩ U−|√
dx

= 0.
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So

(Lf)x = fx −
∑

y:y∼x

fy
√

dydx

= fx.

This means that 1 is an eigenvalue of L with eigenvector f . �

Question: Are there other eigenvectors for the normalized Laplacian possi-
ble associated to the eigenvalue 1? - We don’t know.

Definiton 2.44 (k-blow-up) Let G be a graph on n vertices. The k-blow-
up of G, denoted by G(k), is obtained by replacing each vertex of G by an
independent set of size k and connecting two vertices of G(k) by an edge if
and only if the corresponding vertices of G are connected by an edge.

Lemma 2.45 Let G be a graph on n vertices with normalized Laplacian
eigenvalues λ1, ..., λn. Then the eigenvalues of the k-blow-up of G are 1 with
multiplicity n(k − 1) and λ1, ..., λn

Proof: We will only sketch a proof. The eigenvalues 1 are derived via
Lemma 2.39. There are n(k − 1) linearly independent eigenvectors of the
form (. . . , 1, . . . ,−1, . . .). Each eigenvalue of G is also an eigenvalue of G(k)
since the eigenvector can be “blown up”. Finally we can check that we have
enough eigenvalues n(k − 1) + n = nk. �

Example 2.46 We can now compute the whole spectrum of the complete
k-partite graph Km,...,m where n = km. We notice that Km,...,m is the m-
blow-up of the complete graph Kk. The normalized Laplacian spectrum of
Kk is given by

spec(L(Kk)) = 0,
k

k − 1

[k−1]

.

By using the Lemma 2.45 we get the normalized Laplacian spectrum of
Km,...,m

spec(L(Km,...,m)) = 0, 1[k(m−1)],
k

k − 1

[k−1]

.

We have also seen applications of the eigenvector-method in section 2.1: The
vector (1, 1, ..., 1)T is an eigenvector of the adjacency of a d-regular graph
and of the Laplacian of any graph. We can use the eigenvector-method for
graphs with a special appearance as we have seen in this section. But for
general graphs we can’t say much.
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2.5 Rayleigh quotient

The Rayleigh quotients for the adjacency, Laplacian and normalized Lapla-
cian of some graph G are

R(A; x) =
2
∑

i∼j xixj
∑n

i=1 x2
i

(5)

R(L; x) =

∑

i∼j(xi − xj)
2

∑n
i=1 x2

i

(6)

R(L; D−1/2x) =

∑

i∼j(xi − xj)
2

∑n
i=1 dix2

i

. (7)

The Rayleigh-Ritz Theorem and also the Courant-Fisher Theorem give us
the connection between the eigenvalues and the Rayleigh quotient. We can
bound the eigenvalues of G by calculating the Rayleigh quotient for some
vector x. So almost all of the time we will use the method as described in
the following corollary of the Rayleigh-Ritz Theorem:

Corollary 2.47 Let G be a graph on n vertices with adjacency matrix A
and Laplacian L and normalized Laplacian L.
i) If f is any vector then

λn(A) ≥ R(A; f) ≥ λ1(A),

λn(L) ≥ R(L; f) ≥ λ1(L),

λn(L) ≥ R(L; f) ≥ λ1(L).

ii) If G is d-regular and f a vector which is orthogonal to (1, 1, ..., 1)T then

λn−1(A) ≥ R(A; f)

iii) If f is a vector which is orthogonal to (1, 1, ..., 1)T then

R(L; f) ≥ λ2(L);

R(L; f) ≥ λ2(L).

Lemma 2.48 ([22], p.8) Let s, t ∈ V (G) be nonadjacent vertices of a graph
G with Laplacian eigenvalues λ1 ≤ λ2 ≤ ... ≤ λn. Then

λ2 ≤
1

2
(ds + dt).
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Proof: Let f be the following vector

fv :







1, v = s;
−1, v = t;
0, otherwise.

Since f ⊥ 1, the Rayleigh-Ritz Theorem yields

λ2 ≤
fT Lf

fT f
=

∑

{u,v}∈E(fu − fv)
2

∑

v∈V f 2
v

=
ds + dt

2
.

�

Lemma 2.49 ([6], p. 7) Let G = (V,E) be a connected graph on n vertices.
Then the following statements are equivalent:

1. G is bipartite

2. The greatest normalized Laplacian eigenvalue is 2, i.e. λn(L(G)) = 2.

Proof: 1 =⇒ 2: Let A,B be the partite sets. Define the vector

fi =

{
1, if i ∈ A;
−1, if i ∈ B.

Then we have

R(L; D1/2f) =

∑

i∼j(fi − fj)
2

∑

i dif 2
i

=
4e(A,B)

2|E| = 2.

We conclude that this is the maximum of the Rayleigh quotient by Lemma
2.18. The Rayleigh-Ritz Theorem give us that λn(L(G)) = 2.

2 =⇒ 1: Let x 6= 0 be the vector where the Rayleigh quotient R(L; ·) takes
its maximum which is 2. Then for y = D1/2x

2 = R(L; x) = R(L; D−1/2y) =

∑

i∼j(yi − yj)
2

∑

i diy2
i

≤
∑

i∼j 2y2
i + 2y2

j
∑

i diy2
i

= 2.

We conclude that in the above equation there has to be always equality signs.
Thus if i ∼ j then

y2
i − 2yiyj + y2

j = (yi − yj)
2 = 2y2

i + 2y2
j .
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This is equivalent to yi = −yj whenever i ∼ j. Since G is connected and
y 6= 0 none of the coordinate yi is zero. We define now a partition of the ver-
tices into a set where yi > 0 and another set where yi < 0. By the condition
yi = −yj there can be no edges within a part, i.e. G is bipartite. �

In the beginning we have seen that λn ≥ n/(n − 1) (Lemma 2.18). Since all
graphs are n-colorable this is a special case of the following Lemma.

Lemma 2.50 Let G be a graph on n vertices with normalized Laplacian
eigenvalues 0 = λ1 ≤ λ2 ≤ ... ≤ λn. If G is k-colorable, then λn ≥ k

k−1
.

Proof: Let us denote the different parts of G by A,B,C1, ..., Ck−2 such that
the number of edges between A and B, denoted by e(A,B), is maximal, i.e.

e(A,B) = max{e(A,B), ..., e(A,Cj), ..., e(B,Cj), ..., e(Ci, Cj), ...}.

Look at the vector

fv :=







1, if v ∈ A;
−1, if v ∈ B;
0, otherwise.

Then

λn ≥ R(L; D1/2f) =

∑

u∼w(fu − fw)2

∑

v f 2
v dv

=
4e(A,B) +

∑k−2
i=1 e(A,Ci) + e(B,Ci)

2e(A,B) +
∑k−2

i=1 e(A,Ci) + e(B,Ci)

=
k

k − 1

(4k − 4)e(A,B) + (k − 1)
∑k−2

i=1 e(A,Ci) + e(B,Ci)

2ke(A,B) + k
∑k−2

i=1 e(A,Ci) + e(B,Ci)

≥ k

k − 1

2ke(A,B) + k
∑k−2

i=1 e(A,Ci) + e(B,Ci)

2ke(A,B) + k
∑k−2

i=1 e(A,Ci) + e(B,Ci)
=

k

k − 1
.

�

Remark 2.51 i) The bound in Lemma 2.50 is sharp. Let us look at the
k-partite graphs with parts of equal size. In Example 2.46 we have seen that
the largest normalized Laplacian eigenvalue is k/(k − 1).
ii) We note that Lemma 2.50 is a special case of Theorem 6.7 in Chung’s
book [6].
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2.6 Interlacing

2.6.1 Interlacing Theorems

If M is real symmetric n × n matrix, let λ1(M) ≤ λ2(M) ≤ ... ≤ λn(M)
denote the eigenvalues in nondecreasing order. The principal submatrices
are obtained from M by deleting some rows and the columns with the same
indices. Choose any subset J ⊆ {1, 2, ..., n}, then the principal submatrix of
M indexed by J is the |J | × |J | matrix which can be written as

(Mij)i∈J,j∈J .

Theorem 2.52 (Interlacing) ([4], p.193) Let A be a real symmetric n×n
matrix and let B be a principal submatrix of A with order m×m. Then, for
i = 1, ...,m,

λi(A) ≤ λi(B) ≤ λi+n−m(A).

Note: We have the opposite order as in Godsil.

Theorem 2.53 (Interlacing for the adjacency matrix) Let G be a graph
on n vertices and let v ∈ V . Denote H = G − v to be the induced subgraph
of G without the vertex v. Then

λi(A(G)) ≤ λi(A(H)) ≤ λi+1(A(G)).

Proof: The adjacency matrix of H = G − v is a principal submatrix of the
adjacency matrix of G. So by using the Theorem 2.52 we get the desired
inequalities. �

Definiton 2.54 (interlace) The sequence µ1, . . . , µn−1 interlace the sequence
λ1, . . . , λn if for 1 ≤ k ≤ n − 1 we have

λk ≤ µk ≤ λk+1.

Example 2.55 We look at the 5-cycle G = C5. By deleting one vertex of
C5 we obtain a path with 3 edges, i.e. H = P3. The adjacency eigenvalues
of C5 are

−1 −
√

5

2
,
−1 −

√
5

2
,
−1 +

√
5

2
,
−1 +

√
5

2
, 2.

By the Theorem 2.53 we know that the adjacency eigenvalues of P3 (say
λ1 ≤ . . . ≤ λ4) interlace the adjacency eigenvalues of C5, i.e.

−1 −
√

5

2
≤ λ1 ≤

−1 −
√

5

2
≤ λ2 ≤

−1 +
√

5

2
≤ λ3 ≤

−1 +
√

5

2
≤ λ4 ≤ 2
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Thus λ1 = −1−
√

5
2

and λ3 = −1+
√

5
2

are eigenvalues of P4. The remaining two
eigenvalues are bounded from above and below.

Indeed the eigenvalues of P3 can be calculated as

−1 −
√

5

2
,
1 −

√
5

2
,
−1 +

√
5

2
,
1 +

√
5

2
.

Remark 2.56 The same theorem for the Laplacian or the normalized Lapla-
cian cannot be true. The point is the following. If we delete a vertex v from
a graph then in the adjacency matrix we have to delete a column and a row
but the other entries will remain the same. However, in the Laplacian the
rows and columns corresponding to neighbors of v will also change. We can
look at the following example. Let G = Kn. The Laplacian and normalized
Laplacian eigenvalues of Kn are

spec(L(Kn)) = 0, n[n−1]

spec(L(Kn)) = 0,
n

n − 1

[n−1]

.

So the Laplacian eigenvalues of Kn do not interlace the Laplacian eigenvalues
of Kn+1. Also the normalized Laplacian eigenvalues of Kn do not interlace
the normalized Laplacian eigenvalues of Kn+1. Nevertheless, we can state
another interlacing theorem for the Laplacian:

Theorem 2.57 (Interlacing for the Laplacian) ([4], p.291) Let G be
a graph on n vertices and let H = G − e be a subgraph of G obtained by
deleting an edge in G. Then the n − 1 smallest Laplacian eigenvalues of G
interlace the Laplacian eigenvalues of H, i.e. for all 1 ≤ k ≤ n − 1

λk(L(G − e)) ≤ λk(L(G)) ≤ λk+1(L(G − e)).

Furthermore
λn(L(G − e)) ≤ λn(L(G)).

Example 2.58 We look at the 4-cycle, i.e. G = C4, which has Laplacian
eigenvalues 0, 2, 2, 4. By deleting an edge we get a path with 3 edges, i.e.
H = P3. We denote the Laplacian eigenvalues of H by λ1 ≤ . . . ≤ λ4.
Theorem 2.57 give us now

λ1 ≤ 0 ≤ λ2 ≤ 2 ≤ λ3 ≤ 2 ≤ λ4 ≤ 4

Indeed, the Laplacian eigenvalues of P4 are

λ1 = 0, λ2 = 2 −
√

2, λ3 = 2, λ4 = 2 +
√

2.

Question: Can we state Theorem 2.57 also for the normalized Laplacian?
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2.6.2 Interlacing for Independent Set

Corollary 2.59 ([16], p.88) Let G be a graph on n vertices with maximal
degree ∆. For a set I, the number of eigenvalues of A(G) that fall inside I
(counting multiplicites) is denoted by aG(I). Then the independent number
α(G) satisfies:

α(G) ≤ aG([0, ∆]);

α(G) ≤ aG([−∆, 0]).

Proof: Let B be the principal submatrix of A(G) indexed by the α(G)
vertices that belongs to some maximum independent set in G. Clearly, B is
the zero matrix, i.e. all eigenvalues are zero. By the Interlacing Theorem
2.52 we conclude

λα(G)(A(G)) ≤ 0 ≤ λn−α(G)+1(A(G))

i.e. there are at least α(G) eigenvalues which are negative or zero and there
are at least α(G) eigenvalues which are positive or zero. �

Corollary 2.60 ([12], p.21) Let G be a graph on n vertices. For a set I,
the number of eigenvalues of L(G) that fall inside I (counting multiplicites)
is denoted by mG(I). Then

α(G) ≤ mG([δ, 2∆]);

α(G) ≤ mG([0, ∆]).

Proof: First we note that all the eigenvalues lie in the interval [0, 2∆]
(Lemma 2.12). Let B be the principal submatrix of L(G) indexed by the
α(G) vertices that belongs to some maximum independent set in G. Clearly,
B is a diagonal matrix of whose eigenvalues lie between δ and ∆. By the
Interlacing Theorem 2.52 we conclude

λα(G)(L(G)) ≤ λα(G)(B) ≤ ∆

and

λn−α(G)+1(L(G)) ≥ λn−α(G)+1(B) ≥ δ.

So there are at least α(G) eigenvalues in the interval [0, ∆] and there are at
least α(G) eigenvalues in the interval [δ, 2∆]. �

41



2.6.3 Interlacing for Hamiltonicity

Proposition 2.61 ([4], p.195 and p.291) The Petersen graph P has no
Hamiltonian cycle.

Proof: We will prove this statement indirect.

Assumption: P contains an Hamiltonian cycle.

So after deleting some edges in P we will get C10. Then by the Interlacing
Theorem for the Laplacian 2.57 we get

λk(L(C10)) ≤ λk(L(P )), 1 ≤ k ≤ 10. (8)

The Petersen graph P is strongly regular and has adjacency eigenvalues
3, 1[5],−2[4] (Example 2.36). Thus, by using Lemma 2.20 the Laplacian spec-
trum of P is:

0, 2[5], 5[4].

The Laplacian spectrum of C10 is

0,

(

2 − 1 +
√

5

2

)[2]

,

(

2 +
1 −

√
5

2

)[2]

,

(

2 − 1 −
√

5

2

)[2]

,

(

2 +
1 +

√
5

2

)[2]

, 4.

We note that

λ6(C10) = 2 − 1 −
√

5

2
= 2.618... > 2 = λ6(P ).

This is a contradiction to (8). Thus the assumption was wrong and the
statement is proven. �

2.7 Gerschgorin’s Theorem

Theorem 2.62 (Gerschgorin) ([11], p.464) Let A = (aij)ij be a complex
matrix. Let λ be an eigenvalue of A. Then

|akk − λ| ≤
∑

j:j 6=k

|akj|.

for some k ∈ {1, . . . , n}, i.e. the spectrum of the matrix is contained in the
union of these discs.
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Proof: Since λ is an eigenvalue, there is an eigenvector x 6= 0 such that
Ax = λx or equivalent (A − λI)x = 0. Let k be an integer such that
|xk| = maxi |xi|. Then

|akk − λ||xk| =

∣
∣
∣
∣
∣

∑

j:j 6=k

akjxj

∣
∣
∣
∣
∣
≤
∑

j:j 6=k

|akj||xj| ≤ |xk|
∑

j:j 6=k

|akj|.

By dividing through |xk| we get our result. �

We apply Gerschgorin’s Theorem to the adjacency matrix. Since all diagonal
entries of the adjacency matrix are zero we get

|0 − λ(A(G))| ≤
∑

j:j 6=k

|A(G)kj| = dk

for some k. Thus we can conclude that the adjacency eigenvalues take place
in the interval [−∆, ∆]. This is one part of Lemma 2.4. Also we can deduce
the corresponding parts in Lemma 2.12 and 2.18. But in fact the prove of
these lemmas is an imitation of the above proof.

Example 2.63 We look at the path of length 2, i.e. G = P2:

L := L(G) =





1 −1 0
−1 2 −1
0 −1 1





We conclude by using Gerschgorin’s Theorem that all the eigenvalues 0 =
λ1, λ2, λ3 are in the interval [0,4] but this says nothing more than Lemma 2.12.
So we try to get a better statement. For this we “subtract” the eigenvector
v := (1, 1, 1)T which belongs to the eigenvalue λ1 = 0, i.e. we look at

L + vvT =





2 0 1
0 3 0
1 0 2





The eigenvector v = (1, 1, 1)T belongs in L to 0 and in L+vvT to 3. All other
eigenvectors of L are orthogonal to v, i.e. vT v = 0 (Lemma 1.7 and Perron-
Frobenius Theorem). Thus they are also eigenvectors of L + vvT associated
with the same eigenvalue as in L. Gerschgorin’s Theorem give us now, that
the λ1 and λ2 are in the interval [1,3].
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2.8 Majorization

We refer to the book ”Inequalities: Theory of Majorization and Its Applica-
tions” [1] for more information about the theory of Majorization and there
especially chapter 9. Also Johnson [26] contains a section about majorization
but with small differences in the formulations.

Definiton 2.64 (decreasing rearrangement) For any x = (x1, ..., xn) ∈
R

n, let

x[1] ≥ ... ≥ x[n]

denote the components of x in decreasing order. Let (x[1], ..., x[n]) be called
the decreasing rearrangement of x.

Definiton 2.65 (majorize) The vector x is said to majorize the vector y
if the following two conditions hold:

i∑

k=1

x[k] ≥
i∑

k=1

y[k], for all 1 ≤ i ≤ n − 1, and

n∑

k=1

x[k] =
n∑

k=1

y[k].

Theorem 2.66 (Schur’s Majorization Theorem) Let A be a symmetric
matrix. The vector of eigenvalues of A majorizes the vector of the diagonal
entries of A.

Corollary 2.67 Let G be a graph on n vertices with Laplacian eigenvalues
λ1 ≤ λ2 ≤ ... ≤ λn. Suppose the degrees of G are ordered, i.e. δ = d1 ≤ ... ≤
dn = ∆. Then

λn ≥ dn = ∆, λ1 + . . . λn−1 ≤ d1 + . . . + dn−1

λn + λn−1 ≥ dn + dn−1 λ1 + . . . λn−2 ≤ d1 + . . . + dn−2

...
...

λn + . . . + λ2 ≥ dn + . . . d2 λ1 ≤ d1 = δ

And

λn + . . . + λ1 = dn + . . . + d1.
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Remark 2.68 The last equality which appears in the above corollary is the
fact that the trace of a symmetric matrix is equal to the sum of its eigenvalues
(see also Lemma 1.6). With this equality you can always change between the
two equivalent form of the inequalities. The first form is written on the left
and the second form is written on the right.

2.9 Miscellaneous

The determinant of the Laplacian and of the normalized Laplacian is always
zero because λ = 0 is always an eigenvalue. However the determinant of the
adjacency matrix is more interesting. There exists a theorem which connects
the determinant of the adjacency matrix to some graph properties (see Harary
[13], or Biggs [3], p.40f). A very similar definition to the determinant is the
permanent. The permanent of the adjacency matrix of a bipartite graph
counts the number of perfect matchings in it ([14]). The number of spanning
trees is determined by the Laplacian (e.g. [4], p.281).
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Chapter 3

Cauchy-Schwarz and other
Inequalities

3.1 Cauchy-Schwarz Inequalitiy

The following inequality is known as Cauchy’s or Cauchy-Schwarz’s or Cauchy-
Bunyakovsky-Schwarz’s inequality:

Theorem 3.1 (Cauchy-Schwarz inequality) ([9]) If a1, ..., an and b1, ..., bn

are sequences of real numbers, then

(
n∑

k=1

akbk

)2

≤
n∑

k=1

a2
k

n∑

k=1

b2
k

with equality if and only if the sequences are proportional, i.e. there is an
r ∈ R such that ak = rbk for each 1 ≤ k ≤ n.

Proof: We calculate the difference between the left hand side (LHS) and the
right hand side (RHS) and use Lagrange’s identity

LHS − RHS =
n∑

k=1

a2
k

n∑

k=1

b2
k −

(
n∑

k=1

akbk

)2

=
1

2

n∑

i=1

n∑

j=1

(aibj − ajbi)
2

Since a sum of squares is always nonnegative we have proved the inequality,
i.e. RHS ≥ LHS.

Equality holds iff each of the above summands is zero, i.e.

(aibj − ajbi)
2 = 0
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for any 1 ≤ i, j ≤ n. We have to show now that in this case the sequences are
proportional. If all bk = 0 then they are proportional with r = 0. Otherwise
we chose bl 6= 0 and define r = al/bl. Then

ak =
ak

bl

bl =
al

bl

bk = rbk

Here we have used akbl = albk. �

3.2 An inequality

In Chung’s paper ([7], p. 7) there is mentioned an inequality which she called
a general Cauchy-Schwarz Inequality. We will state here this inequality in
a more general way and give three different proofs, namely an elementary
proof, a proof by using the Chebychev-inequality and finally a proof by using
some general Cauchy-Schwarz-inequality.

Lemma 3.2 For positive numbers aj > 0 and for α ≤ β + 1 the following
inequality holds:

k∑

j=1

aα
j ·

k∑

j=1

aβ
j ≤

k∑

j=1

aα−1
j ·

k∑

j=1

aβ+1
j .

Proof: Let us first calculate the difference between the right hand side (RHS)
and the left hand side (LHS):

RHS − LHS =
k∑

j=1

aα−1
j ·

k∑

j=1

aβ+1
j −

k∑

j=1

aα
j ·

k∑

j=1

aβ
j

=
k∑

j=1

aα−1
j aβ+1

j +
∑

j 6=i

aα−1
j aβ+1

i −
k∑

j=1

aα
j aβ

j −
∑

j 6=i

aα
j aβ

j

=
∑

j 6=i

aα−1
j aβ+1

i −
∑

j 6=i

aα
j aβ

j

=
∑

1≤i<j≤k

aα−1
i aβ+1

j + aα−1
j aβ+1

i − aα
i aβ

j − aα
j aβ

i

=
∑

1≤i<j≤k

aα−1
i aβ

j (aj − ai) + aβ
i aα−1

j (ai − aj).
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Now, it is enough to prove that each of these summands is nonnegative:

Claim:
aα−1

i aβ
j (aj − ai) + aβ

i aα−1
j (ai − aj) ≥ 0.

Proof of the Claim: Without loss of generality we can assume that aj ≥ ai

(because the statement is equivalent by interchanging ai with aj). Then the
first term on the left side is nonnegative and the second term is at most 0.
By our assumption and the condition β − α + 1 ≥ 0 we get:

aα−1
i aβ

j (aj − ai) = aα−1
i aβ−α+1

j aα−1
j (aj − ai)

≥ aα−1
i aβ−α+1

i aα−1
j (aj − ai)

= aβ
i aα−1

j (aj − ai).

�

Remark 3.3 We derived the elementary proof for Lemma 3.2 by looking at
the proof of the Cauchy-Schwarz Inequality as shown in the previous section.

Another way to prove Lemma 3.2 is by using the general Chebyshev-inequality:

Theorem 3.4 (Chebyshev-Inequality) ([21])

k∑

j=1

pj

k∑

j=1

pjxjyj ≥
k∑

j=1

pjxj

k∑

j=1

pjyj.

which holds for nonnegative pj and the same monotonicity for x1, . . . , xn and
y1, . . . , yn, i.e. both are nondecreasing or non-increasing.

Proof: Chebyshev-Inequality implies Lemma 3.2: [8] W.l.o.g. we can
assume that the a1, . . . , ak is not decreasing. Then we choose

pj := aβ+1
j xj := a−1

j yj := aα−β−1
j .

The pj are nonnegative. The xj are not increasing and yj are also not in-
creasing for α ≤ β + 1. So the conditions for the Chebyshev-Inequality are
fulfilled and we get:

k∑

j=1

aβ+1
j ·

k∑

j=1

aα−1
j ≥

k∑

j=1

aβ
j ·

k∑

j=1

aα
j .

�

A third possibility of proving Lemma 3.2 is using the following generalization
of the Cauchy-Schwarz Inequality (see Callebaut [5] and Metcalf [20]):
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Theorem 3.5 (General Cauchy-Schwarz Inequality) ([20], [5])
If {ci}n

i=1 and {di}n
i=1 are nonproportional sequences of positive real numbers,

and r is any real number, then the expression

(
n∑

i=1

cr+x
i dr−x

i

)

·
(

n∑

i=1

cr−x
i dr+x

i

)

is increasing for |x| increasing. If the sequences are proportional, then this
expression is independent of x.

Remark 3.6 Indeed, Theorem 3.5 is a generalization of the Cauchy-Schwarz
Inequality, i.e. for the parameters

ci = ai, di = bi, r = 0, x = 0, 1 respectively

we get the Cauchy-Schwarz Inequality 3.1.

Proof: Theorem 3.5 implies Lemma 3.2: Here we can only prove Lemma
3.2 if we have the stronger condition α ≤ β.

We choose

ci := ai di := 1 r :=
α + β

2
x :=

α − β

2
.

By the stronger condition we have that x is negative (or 0). So the absolute
value of x will increase if we look at x − 1. So the theorem will give us

∑

cr+x
i dr−x

i

∑

cr−x
i dr+x

i ≤
∑

cr+x−1
i dr−x+1

i

∑

cr−x+1
i dr+x−1

i

i.e. ∑

aα
i

∑

aβ
i ≤

∑

aα−1
i

∑

aβ+1
i .

�

3.3 Some Spectral Technique

Definiton 3.7 (spectral norm) The spectral norm of a real square matrix
A is

‖A‖2 :=
√

max{|λ|; λ is eigenvalue of AT A}.

The spectral norm fulfills as any matrix norm the following five points:
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Lemma 3.8 ‖ · ‖2 is a function from the space of all square matrices to the
reals and satisfies

‖A‖2 ≥ 0

‖A‖2 = 0 if and only if A = 0

‖cA‖2 = |c|‖A‖2,∀c ∈ R

‖A + B‖2 ≤ ‖A‖2 + ‖B‖2

‖AB‖2 ≤ ‖A‖2‖B‖2.

Furthermore the spectral norm is compatible with the euclidian norm for
vectors, i.e.

‖Ax‖2 ≤ ‖A‖2‖x‖2

where the euclidian norm is

‖x‖2 =

√
√
√
√

n∑

i=1

x2
i =

√
xT x.

Definiton 3.9 (spectral radius) The spectral radius of a square matrix A
is

ρ(A) := max{|λ|; λ is eigenvalue of A}.

Lemma 3.10 Let A be a symmetric matrix. Then the spectral norm is
equal to the spectral radius, i.e.

‖A‖2 = ρ(A).

Proof: We will use that AT = A and Lemma 1.5.

‖A‖2 =
√

max{|λ|; λ is eigenvalue of AT A}
(AT =A)

=
√

max{|λ|; λ is eigenvalue of A2}
(Lem. 1.5)

=
√

max{|λ|2; λ is eigenvalue of A}
= max{|λ|; λ is eigenvalue of A}
= ρ(A).

�

Proposition 3.11 ([26]) If ‖ ·‖ is any matrix norm and A is a matrix, then

ρ(A) ≤ ‖A‖.
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The Cauchy-Schwarz inequality 3.1 can be rewritten in the following form:

Theorem 3.12 (Cauchy-Schwarz reformulation) Let x, y ∈ R
n. Then

|xT y| ≤ ‖x‖2‖y‖2.

We will refer to the Cauchy-Schwarz Theorem by “C.S”. for short. Let us
now look at the Rayleigh quotient for a symmetric matrix M and x 6= 0:

∣
∣
∣
∣

xT Mx

xT x

∣
∣
∣
∣

C.S.

≤ ‖x‖2‖Mx‖2

‖x‖2
2

≤ ‖x‖2‖M‖2‖x‖2

‖x‖2
2

(Lem. 3.10)
= ρ(M).

Furthermore, the spectral radius is the maximum value of the left side.

Lemma 3.13 Let M be a symmetric matrix. Then

ρ(M) = max
x6=0

∣
∣
∣
∣

xT Mx

xT x

∣
∣
∣
∣
.

Proof: We denote the largest (in absolute value) eigenvalue by λ. Let v be
a eigenvector associated with λ. Then

ρ(M) = |λ| =

∣
∣
∣
∣

vT λv

vT v

∣
∣
∣
∣
=

∣
∣
∣
∣

vT Mv

vT v

∣
∣
∣
∣
.

This equality and the above calculations proves the whole lemma. �

Remark 3.14 The above proof make use of the Cauchy-Schwarz Inequality
and some properties of the spectral norm. Another possebility is to prove
Lemma 3.13 by using the Rayleigh-Ritz Theorem. We can look at Lemma
3.13 as a weaker version of the Rayleigh-Ritz Theorem. Sometimes it is more
adequate and it suffices to use Lemma 3.13.

Suppose we have a symmetric matrix and we know the spectral radius and
we also know the eigenvector v which belongs to this eigenvalue. We are now
interested in the second largest eigenvalue (in absolute value). What we can
do is to “subtracting the eigenvector v from the matrix”.

Theorem 3.15 (subtracting eigenvectors) Let M be a symmetric n×n
matrix with spectral radius ρ(M). Let v be the normalized eigenvector to
the eigenvalue ρ of the spectral radius, i.e.

Mv = ρv, |ρ| = ρ(M), vT v = 1.

Then
‖M − ρvvT‖2 = max{|λ|; λ is eigenvalue of M,λ 6= ρ}.
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Proof: W.l.o.g. we can assume that we have a basis of eigenvectors includ-
ing v such that all eigenvectors different from v are orthogonal to v. (Why
can we do this? First, all eigenvectors which are associated to an eigenvalue
different from ρ have to be orthogonal to v by Lemma 1.7. If the multiplicity
of ρ is k > 1 then we have k − 1 eigenvectors v1, . . . , vk−1 associated with
ρ such that v, v1, . . . , vk−1 are linearly independent. These vectors span a
subspace U ⊆ R

n such that every u ∈ U is an eigenvector associated with ρ.
Now, by the Gram-Schmidt orthonormalization we can choose a orthogonal
basis of U containing v.) Let w 6= v be an eigenvector in this basis.

Then vT w = 0 because they are orthogonal and vT v = 1 because v is nor-
malized. Thus

(M − ρvvT )v = Mv − ρvvT v = ρv − ρv = 0,

(M − ρvvT )w = Mw − ρvvT w = Mw.

This means, that the eigenvectors and eigenvalues of M−ρvvT are the same as
the eigenvectors and eigenvalues of M except that M−ρvvT has an eigenvalue
0 when M has an eigenvalue ρ. So

‖M − ρvvT‖2
(Thm. 3.10)

= ρ(M − ρvvT )

= max{|λ|; λ is eigenvalue of M − ρvvT}
= max{|λ|; λ is eigenvalue of M,λ 6= ρ}.

�

We can apply this theorem to the adjacency matrix and to I − L.

Corollary 3.16 i) Let G be d-regular graph on n vertices with adjacency
eigenvalue λ1 ≤ . . . ≤ λn. Then

max
i6=n

|λi| = ‖A − dΦ0Φ
T
0 ‖2

where

Φ0 =
1√
n

(1, 1, ..., 1)T .

ii) Let G be a graph on n vertices with normalized Laplacian eigenvalue
λ1 ≤ . . . ≤ λn. Then

max
i6=1

|1 − λi| = ‖I − L− Φ0Φ
T
0 ‖2

where

Φ0 =
1

√

vol(G)
D1/21 =

1
√

vol(G)
(
√

d1, ...,
√

dn)T .
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Chapter 4

Pseudo-random graphs

Pseudo-random graphs are graphs which behave like random graphs. First
we will describe random graphs and an extended random graph model in
section 3.1. Then we will define pseudo-random graphs and look at some
basics facts in section 3.2. In the following sections 3.3 to 3.9 we will gener-
alize some theorems from the survey paper about pseudo-random graphs by
Krivelevitch and Sudakov [18]. They looked at (n, d, λ)-graphs and we will
extend some of the statements to the normalized Laplacian eigenvalues. We
will list each of these statements for (n, d, λ)-graphs as a proposition, then
state the generalization and the proof. Not all of the theorems here are dis-
cussed up to sharpness, because the associated theorems for (n, d, λ)-graphs
are “good” (as in [18] described).

4.1 Models

Definiton 4.1 (random graph) A random graph G(n, p) is a probability
space of all labeled graphs on n vertices {1, 2, ..., n}, where {i, j} is an edge
of G(n, p) with probability p = p(n), independently of any other edges, for
1 ≤ i < j ≤ n.

Equivalently, the probability of a graph G = (V,E) with n vertices and e

edges in G(n, p) is pe(1−p)(
n
2)−e. We observe that for p = 1/2 the probability

of every graph is the same and for p > 1/2 the probability of a graph G1

with more edges than another graph G2 is higher. (And the probability of
G1 is smaller than the probability of G2 if p < 1/2.)

A lot of properties hold for almost all G ∈ G(n, p). We say that “the random
graph G(n, p) has property P” and mean that the probability of G ∈ G(n, p)
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has property P tends to one as n tends to infinity. The following definition
and theorem are concerned about the edge distribution of random graphs.

Definiton 4.2 (e(U, W )) The number of edges between two disjoint sub-
sets U,W of vertices is denoted by e(U,W ). More generally, we define

e(U,W ) :=
∑

u∈U

∑

v∈V :u∼v

1.

We note, that if we have an edge e with both endpoints in U ∩ W then this
edge is counted twice in e(U,W ).

Theorem 4.3 (random graph: edge distribution) ([18], p.4) Let p =
p(n) ≤ 0.9. Then for every two (not necessarily disjoint) subsets U,W of
vertices

|e(U,W ) − p|U ||W || = O(
√

|U ||W |np)

for almost all G ∈ G(n, p).

The expected degree of a vertex v in a random graph G(n, p) is the same for
all v. We consider in the following an extended random graph model for a
general degree distribution.

Definiton 4.4 (random graph with given degree distribution) Given
w = (w1, w2, ..., wn) a sequence. A random graph with given degree distribu-
tion G(w) is a probability space of all labeled graphs on n vertices {1, 2, ..., n},
where {i, j} is an edge of G(w) with probability wiwjρ, independently of any
other edges, for 1 ≤ i ≤ j ≤ n where ρ plays the role of a normalization
factor, i.e. ρ = (

∑n
i=1 wi)

−1.

The expected degree of the vertex i is wi. The classical random graph
G(n, p) can be viewed as a special case of G(w) by taking w to be the vector
(pn, pn, ..., pn). Notice that we allow loops in this model but their presence
does not play any essential role. The above definition of a random graph
with given degree distribution comes from Chung und Lu [10]. There are
also other definitions for random graphs with given degrees (see e.g. [17]).

4.2 Basics about Pseudo-random graphs

What are now pseudo-random graphs? Certainly, we don’t want to say that
these are graphs which are more probably by the above probability distri-
butions on graphs than others. But we want that pseudo-random graphs
“behave” like random graphs, i.e. that a pseudo-random graph on n vertices
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have (almost) the same properties than a random graph G(n, p) for some
suitable p.

Random graphs share a lot of properties. But the most fundamental thing
that a graph consists is its edge distribution. So we define pseudo-randomness
by consulting Theorem 4.3. The more the edge distribution of some graph
(or rather of a family of graphs) looks like in Theorem 4.3, the more pseudo-
random is this graph for us.

If we know the eigenvalues of a graph G then we can make some statements
about the edge-distribution of G. This will be our link to spectral graph
theory. In the following we will define the concept of pseudo-random graphs
by means of the eigenvalues of a graph.

Definiton 4.5 (second adjacency eigenvalue) The second adjacency eigen-
value λ(A(G)) is defined as

λ(A(G)) := max{−λ1(A(G)), λn−1(A(G))} = max
i6=n

|λi(A(G))|.

Definiton 4.6 ((n, d, λ)-graph) A (n, d, λ)-graph is a d-regular graph on
n vertices with second adjacency eigenvalue at most λ.

Theorem 4.7 ((n, d, λ)-graph: edge distribution) ([23], chapter 9)
Let G be a (n, d, λ)-graph. Then for every two subsets B,C of vertices, we
have ∣

∣
∣
∣
e(B,C) − d|B||C|

n

∣
∣
∣
∣
≤ λ

√

|B||C|.

If for a graph G the second adjacency eigenvalue λ(A(G)) is small then the
edge distribution of G is (almost) the same as for the random graph G(n, d/n)
by the above theorem. So in this sense the graph G is pseudo-random. To
prove Theorem 4.7 we will use the following proposition.

Proposition 4.8 ([23], Chapter 9) Let G = (V,E) be a (n, d, λ)-graph.
Then for every subset B of V

∑

v∈V

(

|NB(v)| − |B|d
n

)2

≤ λ2 |B|(n − |B|)
n

where NB(v) denotes the set of all neighbors in B of v.
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Proof: Define the vector f

fv :=

{
1 − |B|/n, if v ∈ B;
−|B|/n, otherwise.

This vector f is orthogonal to the 1 = (1, 1, ..., 1)T vector. Recall

λ = max
i6=n

|λi(A(G))| (Cor. 3.16)
= ‖A − dΦ0Φ

T
0 ‖2

where Φ0 = 1√
n
(1, . . . , 1)T . Therefore

(Af)T · (Af)
(f⊥1)
= ((A − dΦ0Φ

T
0 )f)T · ((A − dΦ0Φ

T
0 )f)

(C.S.)

≤ ‖(A − dΦ0Φ
T
0 )f‖2

≤ ‖A − dΦ0Φ
T
0 ‖2

2‖f‖2

= λ2‖f‖2.

On one side we get

‖f‖2 = |B|(1 − |B|/n)2 + (n − |B|)(|B|/n)2 =
|B|(n − |B|)

n
.

On the other side

(Af)T · (Af) =
∑

v∈V

((1 − |B|/n)|NB(v)| − |B|/n(d − |NB(v)|))2

=
∑

v∈V

(|NB(v)| − |B|d/n)2.

The desired result follows. �

Proof: Proposition 4.8 implies Theorem 4.7 By Theorem 4.8,

∑

v∈C

(

|NB(v)| − d|B|
n

)2

≤
∑

v∈V

(

|NB(v)| − d|B|
n

)2

≤ λ2 |B|(n − |B|)
n

.

We can write the number of edges between B and C in the following form:

e(B,C) =
∑

v∈C

|NB(v)|.
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Thus, by the triangle inequality and the Cauchy-Schwarz inequality

∣
∣
∣
∣
e(B,C) − d|B||C|

n

∣
∣
∣
∣

≤
∑

v∈C

1 ·
∣
∣
∣
∣
|NB(v)| − d|B|

n

∣
∣
∣
∣

(C.S.)

≤

√
√
√
√|C| ·

∑

v∈C

(

|NB(v)| − d|B|
n

)2

≤ λ

√

|C| |B|(n − |B|)
n

≤ λ
√

|B||C|.

�

There is a generalization of Theorem 4.7 with an improved “error term”.

Theorem 4.9 ((n, d, λ)-graph: edge distribution) ([18], p.11) Let G
be a (n, d, λ)-graph. Then for every two subsets U,W ⊆ V ,

∣
∣
∣
∣
e(U,W ) − d|U ||W |

n

∣
∣
∣
∣
≤ λ

√

|U ||W |
(

1 − |U |
n

)(

1 − |W |
n

)

.

So the second adjacency eigenvalue of a graph G is a measure of the pseudo-
randomness of G. If a graph has a very small second adjacency eigenvalue
than it is very pseudo-random. How small can λ be? We answer this question
in the following lemma.

Lemma 4.10 (cf. [19], Prop. 2.3) Let G be a d-regular graph on n
vertices with adjacency eigenvalues λ1 ≤ . . . ≤ λn. Then

λ := max
i6=n

|λi| ≥
√

d(n − d)

n − 1
.

In particular, if d ≤ 0.9n then

λ = Ω(
√

d) as n → ∞.

Proof: Using Lemma 2.29 and the fact that λn = d (Lemma 2.5) we get:

nd = 2e = tr(A2) =
n∑

i=1

λ2
i ≤ d2 + (n − 1)λ2.

Solving the above inequality for λ establishes the claim of the lemma. �
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Example 4.11 i) Can we give an example of a pseudo-random graph? - We
look at the complete graph Kn. By using Example 2.41 and Theorem 2.20
we get

spec(A(Kn)) = −1[n−1], n − 1.

Thus the second adjacency eigenvalue 1. So Kn is very pseudo-random. Nev-
ertheless, we notice that the quotient of the degree and the size of Kn tends
to one, i.e. d(Kn)/n = (n − 1)/n → 1. So, the condition on Lemma 4.10 is
not fulfills.

ii) A famous pseudo-random graph is the Payley Pq graph ([18], p.17f) which
has q vertices and is (q − 1)/2-regular. In fact, it can be calculated that the
Pq is a strongly regular graph with parameters (q, q−1

2
, q−5

4
, q−1

4
). By Lemma

2.35 the second adjacency eigenvalue of Pq equals (
√

q + 1)/2. So this graph

shows that the bound λ(G) = Ω(
√

d) from the Lemma 4.10 is sharp.

So far, we have defined the concept of pseudo-random regular graphs. We
will extend it for non-regular graphs by looking at the normalized Laplacian
eigenvalues. Our proceeding will be analogue to the regular case.

Definiton 4.12 (second Laplacian eigenvalue) The second Laplacian eigen-
value is defined as

λ(L(G)) := max
i6=1

|1 − λi(L(G))| = max{λn(L(G)) − 1, 1 − λ2(L(G))}.

If all the normalized Laplacian eigenvalues, except λ1 = 0, are near 1, i.e.
the second Laplacian eigenvalue is small, then we will see that the graph
is a good pseudo-random graph. First, we note that the second Laplacian
eigenvalue of a regular graph is the same as the second adjacency eigenvalue
up some factor.

Lemma 4.13 Let G be a d-regular graph. Then the second adjacency eigen-
value is d times the second Laplacian eigenvalue, i.e.

λ(A(G)) = d · λ(L(G)).

Proof: This is an immediate consequence of Lemma 2.20. �

Definiton 4.14 (volume) The volume of a subset U of the vertices is de-
fined as

vol(U) :=
∑

j∈U

dj.

Note the abbreviated notation vol(G) := vol(V (G)).
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Theorem 4.15 (second Laplacian eigenvalue: edge-distribution) ([6],
p.72) Let G be a graph on n vertices with normalized Laplacian L and second
Laplacian eigenvalue λ. Then for any two subsets X and Y of vertices

∣
∣
∣
∣
e(X,Y ) − vol(X) vol(Y )

vol(G)

∣
∣
∣
∣
≤ λ

√

vol(X) vol(Y ).

Proof: We define the characteristic vectors Φ(X) and Φ(Y ) by

φ(X)i :=

{
1, i ∈ X;
0, otherwise.

φ(Y )i :=

{
1, i ∈ Y ;
0, otherwise.

We have

e(X,Y ) = φ(X)T Aφ(Y ) = φ(X)T D1/2(I − L)D1/2φ(Y ).

We remember

λ = max
i6=1

|1 − λi(L)| (Cor. 3.16)
= ‖I − L− Φ0Φ

T
0 ‖2

where Φ0 = D1/21√
vol(G)

. Therefore

|e(X,Y ) − vol(X) vol(Y )

vol(G)
| = |φ(X)T D1/2 · (I − L− Φ0Φ

T
0 )D1/2φ(Y )|

(C.S.)

≤ ‖D1/2φ(X)‖2‖(I − L− Φ0Φ
T
0 )D1/2φ(Y )‖2

≤ ‖D1/2φ(X)‖2‖I − L− Φ0Φ
T
0 ‖2‖D1/2φ(Y )‖2

=
√

vol(X)λ
√

vol(Y ).

�

There is a slightly stronger result:

Theorem 4.16 (second Laplacian eigenvalue: edge-distribution) ([6],
p.73) Let G = (V,E) be a graph on n vertices with second Laplacian eigen-
value λ. Suppose X,Y are two subsets of the vertices. Then

∣
∣
∣
∣
e(X,Y ) − vol(X) vol(Y )

vol(G)

∣
∣
∣
∣
≤ λ

√

vol(X) vol(Y ) vol(X̄) vol(Ȳ )

vol(G)

where X̄ (Ȳ ) denotes the complement of X (Y ), i.e. X̄ = V \ X.
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So the second Laplacian eigenvalue of a graph G is a measure of the pseudo-
randomness of G. If a graph has a very small second Laplacian eigenvalue
than it is very pseudo-random. How small can λ be? We answer this question
in the following lemma.

Lemma 4.17 Let G be a graph on n vertices with normalized Laplacian L
and second Laplacian eigenvalue λ. Then

λ = max
i6=1

|1 − λi(L)| ≥
√

e−1(G,G) − 1

n − 1
.

where

e−1(G,G) =
n∑

i=1

∑

k:k∼i

1

didk

.

In particular, if ∆ ≤ 0.9n then

λ = Ω(
1√
∆

).

Proof: Using Lemma 2.33 and the fact λ1(L) = 0 we get

e−1(G,G) =
n∑

i=1

(1−λi(L))2 = 1+
n∑

i=2

(1−λi(L))2 ≤ 1+
n∑

i=2

λ2 = 1+(n−1)λ2.

Solving the above inequality for λ establishes the first part of the claim of
the lemma.

We assume now ∆ ≤ 0.9n. Then

e−1(G,G) =
n∑

i=1

∑

k:k∼i

1

didk

≥
n∑

i=1

∑

k:k∼i

1

di∆
=

n∑

i=1

1

∆
=

n

∆
.

Thus

λ ≥
√

e−1(G,G) − 1

n
≥
√

n − ∆

∆n
≥
√

0.1

∆
.

This proves the lemma. �

Example 4.18 We will look now at some (not regular) graphs and decide
if they are pseudo-random or not.
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• Let Ka be the complete graph on a vertices. We add k new vertices
(without any edges) and then we connect each of these new vertices
to all vertices of Ka. We denote the so-constructed graph by G. The
number of vertices of G is a + k. Two vertices of Ka in G are adjacent
twins with degree a+k−1 and two vertices of the new vertices in G are
non-adjacent twins. By using Lemma 2.39 and Lemma 2.40 we conclude
that G has the normalized Laplacian eigenvalues 1 with multiplicity
k−1 and a+k

a+k−1
with multiplicity a−1. Also 0 is a normalized Laplacian

eigenvalue. Totally, we have found a+k−1 eigenvalues so far. So there
is one eigenvalue left. We calculate this eigenvalue by using the fact that
the sum of all normalized Laplacian eigenvalues is equal to n (Lemma
2.33). Thus the last eigenvalue must be a+2k−1

a+k−1
. We summarize this by

spec(L(G)) = 0, 1[k−1],
a + k

a + k − 1

[a−1]

,
a + 2k − 1

a + k − 1

Thus G (or rather some family of such graphs) is a pseudo-random
graph. Though, we notice that the maximum degree is in order of the
number of edges such that we cannot apply Lemma 4.17.

• Let G be any graph and we construct the graph H by gluing a triangle
at one vertex of G. In Example 2.42 we have drawn a picture of this
graph. Also we have seen that H has always an eigenvalue equal to 3/2.
This means that the second Laplacian eigenvalue of H is at least 1/2,
i.e. H is not at all pseudo-random. So, we can destroy the property
of pseudo-randomness by this changes. So in this case the pseudo-
randomness is determined locally.

4.3 Edge Connectivity

Proposition 4.19 ([18], p.25) Let G be an (n, d, λ)-graph with d−λ ≥ 2.
Then G is d-edge-connected. When n is even, it has a perfect matching.

Proof: We will only prove the second statement by using Tutte’s condition
(cf. Theorem 1.4). Since n is even, we need to prove that for every nonempty
set S of vertices the induced graph G[V − S] has at most |S| connected
components of odd size. From the first point of the statement, we know that
G is d-edge-connected, so

e(S, S̄) ≥ γd

where γ is the number of components in G[V − S]. On the other hand there
are at most d|S| edges incident with vertices in S:

e(S, S̄) ≤ d|S|.
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Therefore G[V −S] has at most |S| connected components and hence G con-
tains a perfect matching. �

Definiton 4.20 (d̄U) Let G = (V,E) be a graph. Then we write

d̄U :=
vol(U)

|U | =

∑

u∈U di

|U | .

for the average degree of some set U ⊆ V . We write d̄ if we mean d̄V .

Lemma 4.21 Let U be a subset of vertices. Then

δ ≤ d̄U ≤ ∆.

Proof: We get:

d̄U =
vol(U)

|U | =

∑

u∈U du

|U | ≤
∑

u∈U ∆

|U | = ∆.

In fact, ∆ is the maximum of all of the average degrees d̄U . We bound each
degree by the minimum degree and get the lower bound. �

Clearly, we have vol(U) = |U |d̄U . Thus we can rewrite the Theorem 4.15 in
the following form

∣
∣
∣
∣
e(X,Y ) − d̄X |X|d̄Y |Y |

d̄n

∣
∣
∣
∣
≤ λ

√

d̄X |X|d̄Y |Y |

where G = (V,E) is a graph on n vertices with second Laplacian eigenvalue
λ and X,Y ⊆ V .

Theorem 4.22 (δ-edge-connected) Let G be a graph on n vertices with
second Laplacian eigenvalue λ and minimum degree δ such that δ(1−λ) ≥ 2.
Then G is δ-edge-connected, even κ′(G) = δ.

Proof: Let U ⊆ V (G) with |U | ≤ n/2. We want to show that there are at
least δ edges between U and Ū .

Case 1: 1 ≤ |U | ≤ d̄U = vol(U)
|U | .

e(U, Ū) =
∑

v∈U

dv − e(U,U)

≥ |U |d̄U − |U |(|U | − 1)

= |U |(d̄U − |U | + 1) ≥ d̄U ≥ δ.
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Case 2: d̄U ≤ |U | ≤ n/2.
Here we used the Theorem 4.16.

e(U, Ū) ≥ d̄U |U |d̄Ū(n − |U |)
d̄n

− λ
d̄U |U |d̄Ū(n − |U |)

d̄n

=
d̄U d̄Ū

d̄
· |U |(n − |U |)

n
· (1 − λ)

≥ d̄U d̄Ū

d̄
(1 − λ) · 1

2
· |U |

Now we will look closer at the fraction d̄U d̄Ū

d̄
. Note

d̄ =
vol(G)

n
=

vol(U) + vol(Ū)

n
=

|U |vol(U)
|U | + (n − |U |)vol(Ū)

n−|U |
n

≤ max

{
vol(U)

|U | ,
vol(Ū)

n − |U |

}

= max{d̄U , d̄Ū}.

Thus

e(U, Ū) ≥ d̄U d̄Ū

max{d̄U , d̄Ū}
(1 − λ)

|U |
2

≥ δ(1 − λ)
|U |
2

(cond.)

≥ |U | ≥ d̄U ≥ δ.

So this shows κ′(G) ≥ δ. To get equality, we take a vertex v such that dv = δ
and delete all edges from v (see also Whitney’s Theorem 1.3). �

Remark 4.23 i) It is not obvious for us how to obtain some theorem about
perfect matching by using the above theorem.

ii) Actually, we have proved the following stronger statement:

Lemma 4.24 Let G = (V,E) be a graph on n vertices with second Laplacian
eigenvalue λ and U ⊆ V . If

|U | ≤ n

2
, d̄U(1 − λ) ≥ 2

then

e(U, Ū) ≥ d̄U .
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Example 4.25 One way to read the above theorem intuitively is the follow-
ing: “If a graph is not δ-edge-connected then this graph is not very pseudo-
random.” Let a > 2 be an integer. We take two copies of the complete graph
Ka and connect them by one edge, denote the obtained graph by G.

Ka Ka

Then κ′(G) = 1 but the minimum degree is a − 1. So the edge-connectivity
is much smaller than the minimum degree. This tells us that this graph is
not very pseudo-random. More precisely, Theorem 4.22 give us

λ(G) > 1 − 2

a − 1

which will even tend to 1 as a → ∞.

4.4 Maximum Cut

A cut is a partition of the vertices into two (disjoint) sets U, Ū . We measure
the size of a cut by the number of edges between U and Ū , i.e. by e(U, Ū).
We define

f(G) := max
U⊆V (G)

e(U, Ū)

the size of the maximum cut.

We will now connect the size of the maximum cut with the eigenvalues of G.
Consequently, we will derive upper bounds on f(G). These upper bounds
will depend on the smallest adjacency eigenvalue and the largest (normalized)
Laplacian eigenvalue, respectively. Thus, the graphs in this section have not
to be pseudo-random.

Proposition 4.26 ([18], p.25f) Let G be a d-regular graph on n vertices
with adjacency eigenvalues λ1 ≤ ... ≤ λn. Then

f(G) ≤ (d + λ1)n

4
.
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Lemma 4.27 ([22], p.13) Let G be a graph on n vertices with Laplacian
eigenvalues λ1 ≤ ... ≤ λn. Then

f(G) ≤ λnn

4

Proof: We use the Rayleigh quotient method described in section 2.5. Let
V = U ∪ Ū be an partition of V . Define the vector x by

xv :=

{
1, if v ∈ U ;
−1, if v ∈ Ū .

We get

λn ≥ R(L; x) =

∑

i∼j(xi − xj)
2

∑

i x
2
i

=
4e(U, Ū)

n
.

So the number of edges between U and Ū is as desired. �

Lemma 4.28 Let G be a graph on n vertices with normalized Laplacian
eigenvalues λ1 ≤ ... ≤ λn. Then

f(G) ≤ λn vol(G)

4

Proof: Let V = U ∪ Ū be an partition of V . Define the vector x by

xv :=

{
1, if v ∈ U ;
−1, if v ∈ Ū .

We get

λn ≥ R(L; D−1/2x) =

∑

i∼j(xi − xj)
2

∑

i dix2
i

=
4e(U, Ū)

vol(G)
.

So the number of edges between U and Ū is as desired. �

Remark 4.29 If G is a d-regular graph then all the above statement are
equivalent. We see this by using Theorem 2.20. Thus the proposition follows
from any of the two lemmas.
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4.5 Vertex Connectivity

We will use in this section also the notation of the average degree of some
set U and we will use the Lemma 4.21 from section 4.3 without mention it
every time

Proposition 4.30 ([18], p.23) Let G be an (n, d, λ)-graph with d ≤ n/2.
Then the vertex-connectivity of G satisfies

κ(G) ≥ d − 36λ2/d.

Theorem 4.31 (vertex connectivity) Let G be a graph on n vertices
with second Laplacian eigenvalue λ such that ∆ ≤ n/2. Then

κ(G) > δ − 36λ2∆.

Proof: W.l.o.g. we can assume

λ ≤ 1

6

√

δ

∆
. (1)

Because otherwise the right hand side would be negative and thus the state-
ment is trivially true. We will continue with an indirect proof.

Assumption: ∃S ⊆ V (G) s.t. |S| ≤ δ − 36λ2∆ and G[V − S] disconnected.

Denote by U the smallest component of G[V − S] and W = V − S − U the
rest. Then

|W | = n − |S| − |U | ≥ n − |S|
2

≥ n − δ

2
≥ n − ∆

2
≥ n

4
. (2)

Since all neighbors of a vertex u from U are contained in S ∪ U , we get
du < |N(u) ∪ {u}| ≤ |S ∪ U | = |S| + |U |. So

|U | + |S| > d̄U ≥ δ
ass.
=⇒ |U | > 36λ2∆ (3)

Theorem 4.15 give us

| e(U,W )
︸ ︷︷ ︸

=0

− d̄U |U |d̄W |W |
d̄n

| ≤ λ
√

d̄U |U |d̄W |W |

This implies that

|U | ≤ λ2d̄2n2

d̄U d̄W |W | = λ · d̄

d̄W

· n

|W | ·
λd̄n

d̄U

(1),(2)

≤ 1

6

√

δ

∆
· ∆

δ
· 4 · λd̄n

d̄U

<

√
∆λd̄n√
δd̄U

. (4)
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Now we double count the number of edges between U and S. On the one
hand we have:

e(U, S) = d̄U |U | − e(U,U)
(Thm. 4.15)

≥ d̄U |U | − d̄2
U |U |2
d̄n

− λd̄U |U |
(4)
> |U |(d̄U − 2λd̄U

√
∆√

δ
)

(1)

≥ 2

3
|U |d̄U .

On the other hand we have:

e(U, S)
(Thm. 4.15)

≤ d̄U |U |d̄S|S|
d̄n

+ λ
√

d̄U |U |d̄S|S|
(ass.)

≤ d̄S

n
d̄U |U | + λ

√

d̄U |U |d̄Sδ

(∆≤n/2)

≤ d̄U |U |
2

+
λd̄U |U |

√

d̄Sδ
√

d̄U |U |
(3)
<

d̄U |U |
2

+
λd̄U |U |

6λ
·
√

d̄Sδ

d̄U∆
︸ ︷︷ ︸

≤1

≤ 2

3
d̄U |U |.

This is a contradiction and so the theorem is right. �

Remark 4.32 One can improve the condition in the statement. For example
the statement would be also true if we have that ∆ ≤ (7/6 −

√
1.25/3)n ≈

0.79n. Another way is to bound both ∆ and δ, e.g. the statement would be
true if we have that (3δ − 3n)(6∆ − 4n) ≥ n2.

Question: What are the possible values for the second Laplacian eigenvalue
of graphs on n vertices with an cut-vertex?

The star Sn has an cut-vertex and is bipartite. Thus by Lemma 2.49 the
second Laplacian eigenvalue of Sn is 1. This is the maximum value for the
second Lalacian eigenvalue.
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We will look at the graph G which is obtained from the complete graph Ka

by adding an edge from one vertex from Ka to a new vertex. The graph G
is shown in the following picture.

Ka

The vertex-connectivity of G is 1, i.e. G has a cut-vertex. The normalized
Laplacian eigenvalues of G can be calculated by using Lemma 2.39, Lemma
2.40 and Lemma 2.37. We will leave here the tedious calculation and only
state the outcome. The normalized Laplacian eigenvalues of G are

0,

(
a

a − 1

)[a−2]

,
2a − 1

2(a − 1)
± 1

2

√

4a2 − 11a + 8

a(a − 1)2

Thus the second Laplacian eigenvalue is asymptotically 1√
a
. Nevertheless,

the maximum degree of G is in order of the number of vertices.

4.6 Independent Set

Proposition 4.33 ([18], p.26) Let G be an (n, d, µ)-graph, then

α(G) ≤ µn

d + µ
.

Lemma 4.34 Let G be an graph with second Laplacian eigenvalue λ and
let U be an independent set, then the independence number satisfy

|U | ≤ λ vol(G)

δ(1 + λ)
≤ λn∆

δ(1 + λ)
.

Proof: We notice that the lemma follows from the following more general
theorem by using the trivial bounds vol(G) ≤ ∆n and vol(U) ≥ δ|U |. �

Theorem 4.35 (Volume of independent set) Let G be a graph with sec-
ond Laplacian eigenvalue λ and let U be an independent set, then

vol(U) ≤ λ vol(G)

1 + λ
.
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Proof: Because U is an independent set in G, it holds that e(U,U) = 0 and
by Theorem 4.16 we have that

vol(U)2

vol(G)
≤ λ

vol(U) vol(Ū)

vol(G)
= λ

vol(U)(vol(G) − vol(U))

vol(G)
.

This implies that vol(U) ≤ λ vol(G)
1+λ

. �

Example 4.36 We look at the star Sn with n vertices. The second Laplacian
eigenvalue of Sn is 1 (because Sn is bipartite; use Lemma 2.49). We have
also ∆ = n − 1 and δ = 1. So Lemma 4.34 would give us that the size of
any independent set in Sn is at most n − 1 which is a sharp bound. We can
conclude with Theorem 4.35 that the volume of an independent set in Sn is
at most n − 1. This bound is also sharp for Sn.

Question: How small can the second Laplacian eigenvalue be for graphs on
n vertices with an independent set of size k?

We have seen in Example 4.18 a graph G on n = a + k vertices with an
independent set of size k and with second Laplacian eigenvalue

λ(G) =
a + 2k − 1

a + k − 1
− 1 =

k

a + k − 1
= O(

k

n
).

We will claim now that this is best possible. We state the following claim:

Claim: Let G be a connected graph on n vertices with normalized Laplacian
eigenvalues λ1, . . . , λn with second Laplacian eigenvalue λ and independence
number α. Then

λ ≥ α

n

Even

λn ≥ 1 +
α

n
=

n + α

n
.

NOTE: We have no proof for the above claim. For d-regular graphs it fol-
lows from Proposition 4.33. For some special cases we can apply Lemma 4.28
to derive the claim but for general this seems not to work.

Nevertheless, we have written some procedures in the mathematical software
Maple 9.0 (see Appendix) and so we checked the claim up to all graphs on
at most 6 vertices. We have also calculate some randomly chosen graphs on
more than 6 vertices and the claim remains also for these graphs true. Thus,
we have the impression that this claim should be true.
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4.7 Colorability

Proposition 4.37 ([18], p.28) Let G be an (n, d, λ)-graph. Then the chro-
matic number satisfies

χ(G) ≥ 1 + d/λ.

Lemma 4.38 Let G be a graph on n vertices with second Laplacian eigen-
value λ. Then the chromatic number satisfies

χ(G) ≥ nδ(1 + λ)

λ vol(G)
≥ δ(1 + λ)

λ∆

Proof: Every color class in the proper coloring of G forms an independent
set. By using Lemma 4.34 we obtain:

χ(G) ≥ n

α(G)
≥ nδ(1 + λ)

λ vol(G)
≥ δ(1 + λ)

λ∆
.

�

Question: What are the possible values for the second Laplacian eigenvalue
of graphs on n vertices which are k-colorable? - We answer this question in
the following lemma.

Lemma 4.39 i) The minimum value for the second Laplacian eigenvalue
over all graphs on n vertices which are k-colorable is 1

k−1
(for at least infi-

nitely many n’s).

ii) The maximum value for the second Laplacian eigenvalue over all graphs
on n vertices which are k-colorable is 1.

Proof: i) Lemma 2.50 give us that every k-colorable graph has an eigenvalue
which is at least k

k−1
So the second Laplacian eigenvalue of a k-colorable graph

is at least 1
k−1

. We look at Kk(s), i.e. the s-blow-up of the complete graph
Kk. Then Lemma 2.45 give us that the second Laplacian eigenvalue of Kk(s)
is 1

k−1
. So this proves the first the equality.

ii) We distinguish two cases. First assume that k = 1. Then the only
1-colorable graphs are union of points and they have second Laplacian eigen-
value 1. For k ≥ 2 we can take a bipartite graph which is then k-colorable
and has second Laplacian eigenvalue 1. �
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4.8 Hamiltonicity

We will use the following theorem by Chvátal and Erdős

Proposition 4.40 ([28]) Let G be a graph with at least three vertices. If,
for some s, G is s-connected and contains no independent set of size more
than s, then G is Hamiltonian.

Now, we can get a condition for the Hamiltonicity of a graph by combining
this proposition with the Theorems 4.30 and 4.33.

Proposition 4.41 ([18], p.37) Let G be an (n, d, λ)-graph. If

d − 36
λ2

d
≥ λn

d + λ
,

then G is Hamiltonian.

In the same way, by combining Proposition 4.40 with Theorem 4.31 and 4.34
we get the following result.

Theorem 4.42 (Hamiltonicity) Let G be a graph on n vertices with sec-
ond Laplacian eigenvalue λ. If

δ − 36λ2∆ ≥ nδ(1 + λ)

λ vol(G)

then G is Hamiltonian.

4.9 Small subgraphs

Proposition 4.43 ([24]) Let G be an (n, d, λ)-graph with at most one loop
at each vertex. For every integer r ≥ 2 denote

sr =
(λ + 1)n

d

(

1 +
n

d
+ ... +

(n

d

)r−2
)

.

Then every set of more than sr vertices of G contains a copy of Kr.

We are not really interested in loops. So we will generalize this theorem for
graphs without loops. But a generalization with loops is also possible.
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Theorem 4.44 (copy of Kr) Let G be a graph on n vertices with second
Laplacian eigenvalue λ. For every integer r ≥ 2 denote

sr = λ∆

(

∆n

δ2
+

(
∆n

δ2

)2

+ ... +

(
∆n

δ2

)r−1
)

.

Then every set of more than sr vertices of G contains a copy of the complete
graph Kr

Proof: (induction over r):
r=2: Let S ⊆ V (G) with |S| > s2 = λ∆2n

δ2 . With Theorem 4.15 we get

e(S, S) ≥ vol2(S)

vol(G)
− λ vol(S) ≥ δ2|S|2

∆n
− λ∆|S| >

δ2|S|
∆n

· λ∆2n

δ2
− λ∆|S| = 0.

So there is at least one edge in S, i.e. that the base case is proven.

r → r+1: Let S ⊆ V (G) with |S| > sr+1.

∑

v∈S

|NS(v)| = e(S, S) ≥ vol2(S)

vol(G)
− λ vol(S) ≥ δ2|S|2

∆n
− λ∆|S|.

It follows that there is a vertex v ∈ S such that

|NS(v)| ≥ δ2|S|
∆n

− λ∆ >
δ2sr+1

∆n
− λ∆ = sr.

Using the induction hypothesis, we get that NS(v) contains a copy of Kr.
Thus S contains a copy of Kr+1. �

Proposition 4.45 ([18], p.32f) Let k ≥ 1 be an integer and let G be an
(n, d, λ)-graph such that d2k/n � λ2k−1. Then G contains a cycle of length
2k + 1.

Theorem 4.46 (copy of cycle C2k+1) Let k ≥ 1 be an integer and let G
be a graph with second Laplacian eigenvalue λ. If

λ2k−1 � δ4k−2

n∆4k−3
and λ = o

(
δ4

∆4

)

(5)

then G contains a cycle of length 2k + 1.
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Proof: Assumption: Suppose that G contains no cycle of length 2k + 1.
For every two vertices u, v of G denote by d(u, v) the length of a shortest
path from u to v. For every i ≥ 1 let Ni(v) := {u; d(u, v) = i} be the set of
all vertices in G which are at distance exactly i from v. In [25] Erdős et al.
proved that if G contains no cycle of length 2k+1 then for any 1 ≤ i ≤ k the
induces graph G[Ni(v)] contains an independent set of size|Ni(v)|/(2k − 1).
Let v be a vertex with minimal degree, i.e. dv = δ. The above result together
with Theorem 4.34 implies that for every 1 ≤ i ≤ k the following holds

|Ni(v)| ≤ (2k − 1)
∆λn

δ
. (6)

Therefore by Theorem 4.15

e(Ni(v), Ni(v)) ≤ vol2(Ni(v))

vol(G)
+ λ vol(Ni(v)) ≤ ∆2|Ni(v)|2

δn
+ λ∆|Ni(v)|

(6)

≤ ∆2(2k − 1)∆λn|Ni(v)|
δ2n

+
∆2

δ2
· λ∆|Ni(v)|

=
2kλ|Ni(v)|∆3

δ2

(5)
= o(

δ2

∆
|Ni(v)|). (7)

Claim: For every 1 ≤ i ≤ k − 1 the following is true

|Ni+1(v)|
|Ni(v)| ≥ (1 − o(1))

δ4

∆4λ2
.

We prove this claim by induction. By the above discussion the number of
edges spanned by N1(v) is o(δ2) and therefore

e(N1(v), N2(v)) = vol(N1(v)) − e(N1(v), N1(v)) − e(N1(v), {v})
(dv=δ)

≥ δ2 − o(δ2) = (1 − o(1))δ2.

On the other hand, by Theorem 4.15

e(N1(v), N2(v)) ≤ ∆2|N1(v)||N2(v)|
δn

+ λ∆
√

|N1(v)||N2(v)|

(7)

≤ ∆2

δn
· ∆ · (2k − 1)∆λn

δ
+ λ∆|N1(v)|

√

|N2(v)|
|N1(v)|

≤ O(
λ∆4

δ2
) + λ∆2

√

|N2(v)|
|N1(v)|

= o(δ2) + λ∆2

√

|N2(v)|
|N1(v)| .
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Thus the base case is proven:

|N2(v)|
|N1(v)| ≥ (1 − o(1))

δ4

∆4λ2
.

Now assume that |Ni(v)|
|Ni−1(v)| ≥ (1 − o(1)) δ4

∆4λ2 . We obtain

e(Ni(v), Ni+1(v)) = vol(Ni(v)) − e(Ni(v), Ni(v)) − e(Ni−1(v), Ni(v))
(7)

≥ δ|Ni(v)| − o(
δ2

∆
|Ni(v)|) − ∆|Ni−1(v)|

(ind.)

≥ (1 − o(1))
δ2

∆
|Ni(v)| − ∆(1 + o(1))

∆4λ2

δ4
|Ni(v)|

(5)
= (1 − o(1))

δ2

∆
|Ni(v)| − o(

δ4

∆3
|Ni(v)|)

≥ (1 − o(1))
δ2

∆
|Ni(v)|.

On the other hand, by Theorem 4.15

e(Ni(v), Ni+1(v)) ≤ ∆2|Ni(v)||Ni+1(v)|
δn

+ λ∆
√

|Ni(v)||Ni+1(v)|

(6)

≤ ∆3(2k − 1)λ|Ni(v)|
δ2

+ λ∆|Ni(v)|
√

|Ni+1(v)|
|Ni(v)|

= o(
δ2

∆
|Ni(v)|) + λ∆|Ni(v)|

√

|Ni+1(v)|
|Ni(v)| .

Therefore |Ni+1(v)|
|Ni(v)| ≥ (1 − o(1)) δ4

∆4λ2 and we proved the induction step.

Finally note that

|Nk(v)| = δ

k−1∏

i=1

|Ni+1(v)|
|Ni(v)| ≥ (1 − o(1))δ

(
δ4

∆4λ2

)k−1

= (1 − o(1))
δ4k−3

λ2k−2∆4k−4

(5)
� (2k − 1)

∆λn

δ
.

This is a contradiction (6). �
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Proposition 4.47 ([18], p.30) Let H be a fixed graph with r edges, s
vertices and maximum degree ∆, and let G = (V,E) be an (n, d, λ)-graph,

where, say, d ≤ 0.9n. Let m < n satisfy m � λ
(

n
d

)∆
. Then, for every subset

V ′ ⊂ V of cardinality m, the number of (not necessarily induced) copies of
H in V ′ is

(1 + o(1))
ms

|Aut(H)|

(
d

n

)r

.

Remark 4.48 i) Let us denote by copy(H,V ′) the number of not necessar-
ily induced unlabeled copies of H in V ′. Let Aut(H) be the automorphism
group of H. The number of not necessarily induced labeled copies of H in
V ′ is equal to copy(H,V ′) · |Aut(H)|.

ii) We will use the notation of probability theory in the following. So we
write the probability by P and the expectation by E.

Definiton 4.49 (conditional probability)

P[A|B] =
P[A,B]

P[B]
=

P[A and B]

P[B]
.

Lemma 4.50 Let X be a random variable and φ a measurable function and
A,B some suitable sets. Then
∑

k∈B

P[X ∈ A|φ(X) = k] · P[φ(X) = k|φ(X) ∈ B] = P[X ∈ A|φ(X) ∈ B].

Proof: We calculate
∑

k∈B

P[X ∈ A|φ(X) = k]P[φ(X) = k|φ(X) ∈ B]

=
∑

k∈B

P[X ∈ A, φ(X) = k]P[φ(X) = k, φ(X) ∈ B]

P[φ(X) = k]P[φ(X) ∈ B]

=
∑

k∈B

P[X ∈ A, φ(X) = k]P[φ(X) = k

P[φ(X) = k]P[φ(X) ∈ B]

=
∑

k∈B

P[X ∈ A, φ(X) = k]

P[φ(X) ∈ B]

=
P[X ∈ A, φ(X) ∈ B]

P[φ(X) ∈ B]

= P[X ∈ A|φ(X) ∈ B].

�
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Theorem 4.51 (number of copies) Let H be a fixed graph with r edges
and s vertices and maximum degree ∆(H). Let G = (V,E) be a graph
on n vertices, maximum degree ∆ ≤ 0.9n, minimum degree δ and second
Laplacian eigenvalue λ. Let m < n satisfy

m � λ∆

(
∆3

δ3

)r (
δn

∆2

)∆(H)

. (8)

Then, for every subset V ′ ⊆ V of cardinality m, the following holds

(1 + o(1))
ms

|Aut(H)|

(
δ2

∆n

)r

≤ copy(H,V ′) ≤ (1 + o(1))
ms

|Aut(H)|

(
∆2

δn

)r

.

Proof: We consider a random one-to-one mapping of the set of vertices of
H into the set of vertices V ′, i.e. all one-to-one mappings from V (H) to V ′

have the same probability.

Denote by A(H) the event that every edge of H is mapped on a edge of G.
In such a case we say that the mapping is an embedding of H. It holds that

P[A(H)] =
copy(H,V ′)

ms|Aut(H)| .

Thus it is enough to show the following claim

Claim:

(1 + o(1))

(
δ2

∆n

)r

≤ P[A(H)] ≤ (1 + o(1))

(
∆2

δn

)r

Proof of the claim: (induction over r)

r=0: If H has no edges then clearly P[A(H)] = 1, i.e. the claim is true.

r > 0: Suppose that the claim holds for all graphs with less than r edges,
and let u, v be two vertices of H such that u ∼ v. Let Huv be the graph
obtained from H by removing the edge {u, v} (and keeping all vertices). Let
Hu and Hv be the induced subgraphs of H on the sets of vertices V (H)\{u}
and V (H) \ {v}, respectively. Let H ′ be the induced subgraph of H on the
set of vertices V (H) \ {u, v}. Let r′ be the number of edges of H ′. Since
u ∼ v we have

r − r′ ≤ 2(∆(H) − 1) + 1 = 2∆(H) − 1. (9)
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By the definition of the conditional probability we get

P[A(H)] = P[A(H)|A(H ′)]P[A(H ′)]. (10)

Using Lemma 4.50

P[A(H)|A(H ′)] =
∑

f ′∈A(H′)

P[A(H)| rest(f) = f ′] · P [rest(f) = f ′|A(H ′)]

= Ef ′ [P [A(H)| rest(f) = f ′]] (11)

where rest(f) denotes the restriction of the function f to the vertex set V (H ′)
and Ef ′ [·] takes the expectation according to the induced probability distri-
bution on rest(f).

For a fixed embedding f ′ from H ′, let Uf ′ be the vertex set of all possible
extension from f ′ to an embedding of Hu in V ′ and let Wf ′ be the vertex
set of all possible extension from f ′ to an embedding of Hv in V ′. Denote
ν(u, f ′) = |Uf ′ | and ν(v, f ′) = |Wf ′ |. Since u ∼ v we have e(Uf ′ ,Wf ′)
many possibilities to extend f ′ to an embedding of H. Totally there are
m1 · m2 := (m − s + 2)(m − s + 1) many possibilities to extend f ′. So

P[A(H)| rest(f) = f ′] =
e(Uf ′ ,Wf ′)

(m − s + 2)(m − s + 1)
=

e(Uf ′ ,Wf ′)

m1m2

.

By Lemma 4.15 we get

δ2

∆n

ν(u, f ′)ν(v, f ′)

m1m2

− ε ≤ P[A(H)| rest(f) = f ′] ≤ ∆2

δn

ν(u, f ′)ν(v, f ′)

m1m2

+ ε

(12)

where |ε| = λ∆

√
ν(u,f ′)ν(v,f ′)

m1m2
. We will see later that this “error term” will be

negligible.

How many extensions on an embedding f ′ of H ′ to an embedding of Huv

does exists? W.l.o.g. we can assume that ν(u, f ′) ≤ ν(v, f ′). By extending
stepwise, first to V (H ′) ∪ {u} and then to V (H) = V (H ′) ∪ {u, v} we get at
least ν(u, f ′)(ν(v, f ′)− 1) extensions and at most ν(u, f ′)ν(v, f ′) extensions.
Thus

ν(u, f ′)ν(v, f ′) − ν(u, f ′)

m1m2

≤ P[A(Huv)| rest(f) = f ′] ≤ ν(u, f ′)ν(v, f ′)

m1m2

.

(13)

We show now that the expectation of the term − ν(u,f ′)
m1m2

is negligible. By using
ν(u, f ′) ≤ m we get

Ef ′ [
ν(u, f ′)

m1m2

] ≤ m

m1m2

Ef ′ [1] = O(
1

m
).
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If we show now that m → ∞ then indeed the above term is negligible. By
using Lemma 4.17 we get λ = Ω( 1√

∆
). Thus

m � λ∆

(
∆3

δ3

)r (
δn

∆2

)∆(H)

= λ
∆3r+1−2∆(H)n∆(H)

δ3r−∆(H)

≥ ∆3r−∆(H)

δ3r−∆(H)
·
√

∆n∆(H)

∆∆(H)
≥ n∆(H)

∆∆(H)−1/2
≥ n1/2

i.e. m → ∞ as n → ∞.

By taking the expectation Ef ′ over (13) and including that some term is
negligible, we become

Ef ′ [
ν(u, f ′)ν(v, f ′)

m1m2

] =
∑

f ′∈A(H′)

P[A(Huv)| rest(f) = f ′] · P[rest(f) = f ′|A(H ′)]

(Lem. 4.50)
= P[A(Huv)|A(H ′)]

=
P[A(Huv), A(H ′)]

P[A(H ′)]
=

P[A(Huv)]

P[A(H ′)]
. (14)

Altogether

P[A(H)]
(10),(11)

= Ef ′ [P[A(H)| rest(f) = f ′]] · P[A(H ′)]
(12)

≤ ∆2

δn
Ef ′ [

ν(u, f ′)ν(v, f ′)

m1m2

]P[A(H ′)] + α

(14)
=

∆2

δn

P[A(Huv)]

P[A(H ′)]
P[A(H ′)] + α

(ind.)

≤ (1 + o(1))

(
∆2

δn

)r

+ α. (15)

where α = Ef ′ [|ε|] · P [A(H ′)]. In the same manner we get

P[A(H)] ≥ (1 + o(1))

(
δ2

∆n

)r

− α.

Now, the only thing we have to check, is that the term α is negligible in

respect to the main term. Since
(

δ2

∆n

)r

≤
(

∆2

δn

)r

it is enough to show

α �
(

δ2

∆n

)r

.
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We begin by using Jensen’s Inequality

α = Ef ′ [|ε|]P[A(H ′)]

≤ λ∆

√

Ef ′ [ν(u, f ′)ν(v, f ′)]

m1m2

P[A(H ′)]

(13)

≤ λ∆√
m1m2

√

P[A(Huv)]

P[A(H ′)]
P[A(H ′)]

(ind.)

≤ λ∆√
m1m2

(1 + o(1))

(
∆2

δn

)(r−1+r′)/2

Now, we have α �
(

δ2

∆n

)r

if

m � λ∆

(
∆2

δn

)(r−1+r′)/2(
∆n

δ2

)r

(9)

≥ λ∆

(
∆3

δ3

)r (
δn

∆2

)∆(H)

which is exactly our assumption (8) on m. �
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Chapter 5

Turán’s Theorem

5.1 Classical Turán’s Theorem

Theorem 5.1 (Turán) ([15], p.42) If a graph G on n vertices has no
(t + 1)-clique, t ≥ 2, then

|E(G)| ≤
(

1 − 1

t

)
n2

2
.

Proof: (Induction over n)
n=1: There is only one graph with one vertex and this graph has no t-clique
for t ≥ 2 and has no edges.

n>1: Suppose now the inequality is true for all graphs on at most n − 1
vertices, and let G be a graph on n vertices without (t + 1)-cliques and with
a maximal number of edges. This graph certainly contains t-cliques, since
otherwise we could add edges. Let A be a t-clique, and set B = V − A.

G[A] is the complete graph, so A contains e(A,A) = t(t − 1) edges. By
induction, we have

e(B,B) ≤
(

1 − 1

t

)

(n − t)2.

Since G has no (t+1)-clique, every x ∈ B is adjacent to at most t−1 vertices
in A, and we obtain

e(A,B) ≤ (t − 1)(n − t).
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Summing up

|E(G)| =
e(A,A)

2
+

e(B,B)

2
+ e(A,B)

≤ t(t − 1)

2
+

(

1 − 1

t

)
(n − t)2

2
+ (t − 1)(n − t)

=

(

1 − 1

t

)
n2

2
.

�

Definiton 5.2 (H-free, ex(G, H)) Let G,H be graphs. If G contains no
copy of H then we say that G is H-free. The Turán number ex(G,H) of H
in G is the largest integer e such that there is an H-free subgraph of G with
e edges.

There are different viewpoints of Turán’s Theorem. First, the question arises,
how do we construct an Kt+1-free graph with maximal number of edges?
Well, we can look at the t-partite graphs which are Kt+1-free. The complete
t-partite graph on n vertices whose partite sets differs in size at most 1 is
called Turán’s graph denoted by T (n, r). The size of each part is floor or ceil
of n/r. Thus, it has

|E(T (n, t))| =

(

1 − 1

t

)
n2

2

edges. (For n = αt this is exactly true and otherwise we have to take the
floor or ceil some numbers.) Turán’s Theorem says that this construction is
best possible.

Theorem 5.3 Among n vertex Kt+1-free graphs Turán graph T (n, r) has
the most number of edges.

We can also start with the complete graph on n vertices. Then we will ask
how many edges do we have to delete such that the remaining graph will be
Kt+1-free? Turán’s Theorem answer this question: We have to delete at least
1
t

n2

2
edges. We note that the complete graph has n(n−1)

2
edges. The difference

between n2

2
and n(n−1)

2
is very small. So we can also say by neglecting some

error term, that we have to delete at least 1
t

of all edges in Kn to obtain an
Kt+1-free graph. We will state this in an asymptotic way:

Corollary 5.4 The maximum number of edges in an n-vertex Kt+1-free
graph is

ex(Kn, Kt+1) =

(
t − 1

t
+ o(1)

)
n(n − 1)

2
.

as n → ∞.

We will now look at generalizations of this result.
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5.2 Generalization to (n, d, λ)-graphs

We will discuss here the paper of Sudakov, Szabó and Vu [2]. They generalize
Turán’s Theorem for (n, d, λ)-graphs.

Theorem 5.5 (Turán’s Theorem for (n, d, λ)-graphs) ([2]) Let t ≥ 3
be an integer and let G be an (n, d, λ)-graph. If

dt−1

nt−2
� λ

then

ex(G,Kt) =

(
t − 2

t − 1
+ o(1)

)

|E(G)|.

Let us check that Theorem 5.5 is indeed a generalization of Corollary 5.4.
For that we observe that Kn is a (n−1)-regular graph with second adjacency
eigenvalue equal to 1 (cf. Example 4.18).

Now, we will outline the proof of Theorem 5.5. The idea is to prove the The-
orem by induction over t and using the properties of pseudo-random graphs
such as Theorem 4.8 and Corollary 4.7 and also the Cauchy-Schwarz Inequal-
ity. The problem with the induction is that a subgraph of a (n, d, λ)-graph
has not to be d-regular any more. For that, they introduce the technical
concept of graphs which have the (t, p, δ)-property. For these graphs the in-
duction works and the (n, d, λ)-graphs have the (t, p, δ)-property as shown in
[2].

Definiton 5.6 ((t, p, δ)-property) Let G = (V,E) be a graph on n ver-
tices, let t ≥ 2 be an integer and let δ(n) and p(n) be two functions of n such
that 0 < p = p(n) ≤ 1 and δ(n) tends to zero when n tends to infinity. We
say that G has the (t, p, δ)-property if it satisfies the following two conditions.

(i) For every two subsets U and W of V (G) of cardinality at least (δp)t−2n
∣
∣
∣e(U,W ) − p|U ||W |

∣
∣
∣ ≤ δp|U ||W |

(ii) For every subset U of V (G) with cardinality at least (δp)t−3n there are
at most (δp)t−1n vertices of G with

∣
∣
∣|NU(v)| − p|U |

∣
∣
∣ > δp|U |,

where NU(v) is the set of all neighbors of v in U .
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5.3 Comments about Chung’s paper

There is an more general paper ([7]) by Chung for a spectral Turán theorem
for general graphs. This paper should appear soon. She uses the normalized
Laplacian instead of the adjacency. We have the impression that something
is wrong in her paper. We begin with her main theorem.

Theorem 5.7 Let G be a graph on n vertices and second Laplacian eigen-
value λ. If

λ = o

(
1

vol−2t+3(G) vol(G)t−2

)

(1)

then any subgraph of G containing no Kt+1 has at most
(

t − 1

t
+ o(1)

)

|E(G)|

edges.

Definiton 5.8 (k-volume) Let U be a subset of the vertices and k a (pos-
sibly negative) integer. Then we define the k-volume of U as

volk(U) =
∑

u∈U

dk
u.

There is also used an inductive argument to prove Theorem 5.7. But for that
one has to state the above theorem in a more general way. Let R be any subset
of edges such that every Kt+1 in G contains at least one edge in R. In order
to prove Theorem 5.7, it is enough to show that |R| ≥ (1 + o(1))|E(G)|/t.
Look at the following theorem

Theorem 5.9 Suppose a graph G on n vertices has second Laplacian eigen-
value λ which satisfies (1). Let X be a subset of vertices in G and 0 < k ≤ t
nonnegative integers. If R contains an edge from every complete subgraph
on k + 1 vertices, then we have, for all i such that 0 ≤ i ≤ k,

∑

u∈X

∑

v∈X:{u,v}∈R

1

di
vd

i
u

≥ vol2−i+1(X)

k vol(G)
+ O

(

λ
k−1∑

j=0

vol−2i−2j+1(X) volj(G)

)

.

Remark 5.10 First, let us chose i = 0 and X = V (G) in the above lemma.
Then we get

2|R| ≥ vol2(G)

k vol(G)
+ ε =

1

k
2|E(G)| + ε

where ε is the error term. By some calculation about the error term one can
conclude Theorem 5.7 from Theorem 5.9.

86



To prove Theorem 5.9 Chung needs a lot of lemmas. The first three lemmas
describe the edge distribution of pseudo-random graphs; they look all fine.
The next lemmas look not so fine. We will here state these lemmas and show
why we think that they are wrong. Also we will extract some claims about
the negligence of some λ2-terms and look at them.

5.3.1 Lemmas

Lemma 5.11 (Lemma 4 in Chung’s paper [7]) Suppose a graph G on n
vertices has second Laplacian eigenvalue less than δ. Suppose X is a subset
of vertices of G. For v a vertex in X, let ΓX(v) denote the neighborhood of
v in X and let R(v) denote a subset of Γ(v). We have

∑

v∈X

|ΓX(v)|2
dv

≥ vol3(X)

vol2(G)
+ O(δ

vol2(X)

vol(G)
) + O(δ2 vol(X)). (2)

and
∑

v∈X

|ΓX(v)||R(v)|
dv

≤
∑

v∈X

|R(v)| vol(X)

vol(G)
+ δ

vol2(X)

vol(G)
. (3)

In this Lemma the second inequality seems to be wrong. Consider the fol-
lowing counterexample.

Example 5.12 Let G = Cn be a cycle with n vertices and let δ = 1,
say. Since G is 2-regular we have for every subset U of the vertices that
vol(U) = 2|U |.

Let X be any subset of vertices such that for all v ∈ X it holds |ΓX(v)| ≥ 1
and let R(v) = {uv} be a single vertex with v ∼ uv for all v ∈ X. So we
have that every vertex v has at least one neighbor in X and the set R(v)
contains exactly one element. Thus, the left hand side (LHS) and right hand
side (RHS) of (3) are

LHS =
∑

v∈X

|ΓX(v)||R(v)|
dv

≥
∑

v∈X

1

2
=

|X|
2

.

RHS =
∑

v∈X

|R(v)| vol(X)

vol(G)
+ δ

vol2(X)

vol(G)

= |X|vol(X)

vol(G)
+ δ

vol2(X)

vol(G)

=
|X|2
n

+
2|X|2

n
.
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If |X| = o(n), then the LHS ≥ RHS, contradicting Lemma 5.11.

Lemma 5.13 (Lemma 5 in Chung’s paper [7]) Suppose a graph on n
vertices has second Laplacian eigenvalue less than δ. Suppose X is a subset
of vertices of G and i is a nonnegative value. We have

∑

v∈X

1

di+1
v

(vol−i(ΓX(v)))2 =
vol3−i+1(X)

vol2(G)
+ O(δ

vol−i+1(X) vol−2i+1(X)

vol(G)
) (4)

and

∑

v∈X

1

di+1
v

vol−i(ΓX(v)) vol−i(R(v)) =

=
vol−i+1(X)

vol(G)

∑

v∈X

∑

u∈R(v)

1

di
vd

i
u

+ O(δ
vol−i+1(X) vol−2i+1(X)

vol(G)
. (5)

The second equation seems to be wrong. We use the same example as above.
This gives us:

LHS =
∑

v∈X

1

di+1
v

vol−i(ΓX(v)) vol−i(R(v))

≥ |X| 1

2i+1
2−i2−i

= 2−3i−1|X|.

RHS =
vol−i+1(X)

vol(G)

∑

v∈X

∑

u∈R(v)

1

di
vd

i
u

+ O

(

δ
vol−i+1(X) vol−2i+1(X)

vol(G)

)

=
|X|2−i+1

2n
|X| 1

2i2i
+ O

( |X|2−i+1 · |X|2−2i+1

2n

)

= 2−3i |X|2
n

+ O

(

2−3i+1 |X|2
n

)

.

Again, for some X, with |X| = o(n), the RHS is of smaller order than the
LHS, which would contradict the second equation of Lemma 5.13.

Lemma 5.14 (Lemma 6 in Chung’s paper [7]) Suppose that X is a
subset of vertices in a graph G and α ≤ β are positive values. Then

vol−α(X) vol−β(X) ≤ vol−α+1(X) vol−β−1(X).
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Remark 5.15 This lemma should be stated at least for the case 0 ≤ α ≤ β,
i.e. α can be zero. Because when Chung needs the lemma on page 12, she
exactly needs the case that α = 0 and β = −2j. We have proved this lemma
in a more general case in Chapter 3 (see Lemma 3.2).

5.3.2 Negligence of the λ2-term

We will now analyze some points in the process of the proof of Theorem 5.9
from the paper [7]. For that we assume that we have a graph G on n vertices
and second Laplacian eigenvalue λ such that (1) holds.

On page 11 in the second paragraph there is mentioned, that the terms
involving λ2 are of lower order than the terms involving λ by using the
assumption (1) on λ. So Chung claims the following:

λ2

k−2∑

j=0

√

vol−1(X) vol−4j−1(X) volj(G) = o

(

λ
k−2∑

j=0

|X| vol−2j(X) volj(G)

vol(G)

)

This claim seems to be wrong. Consider the following example:

Example 5.16 Let G be the Payley-graph Pq which has n = q vertices and
is d-regular with d = n−1

2
≈ n

2
. By Example 4.11 and Theorem 2.20 we

know that the second Laplacian eigenvalue λ of Pq fulfills λ ≈ 1√
n
. The

Payley-graph fulfills the assumption (1) because

1

vol−2t+3(G) vol(G)t−2
=

1

d−2t+3n · dt−2nt−2
=

dt−1

nt−1
= O(1).

Then

LHS = λ2
∑

√

|X|
d

d−4j−1|X|(dn)j ≈ 1

n

∑

|X|njd−j−1 ≈ |X|2
k

n2
.

RHS = λ
∑ |X|d−2j|X|(nd)j

nd
≈ 1√

n

∑

|X|2nj−1d−j−1 ≈ |X|2 2k

n2.5

If |X| = o(n1/2), then the RHS is tending faster to 0 than the LHS. This
contradicts the above claim.
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On page 11 at line 14 there is mentioned, that the terms involving λ2 can be
ignored by using the assumption on λ. So Chung claims the following:

λ2 vol(X) = o

(

λ
vol2(X)

vol(G)

)

.

Consider again the above example. We obtain

LHS = λ2|X|d ≈ |X|
2

.

RHS = λ
|X|2d2

nd
≈ |X|2

2
√

n
.

This is a contradiction to the above claim if |X| = o(
√

n).
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Maple-Code

We will describe below some Maple-Code which we used to verify some state-
ments on some exemplary graphs. We used the mathematical software Maple

9 by Maplesoft. The (standard) commands for graphs are in a package called
“networks” and the commands for linear algebra are in a package called
“linalg”. So first one should include these two packages:

with(networks):with(linalg):

The command adjacency(G) will compute the adjacency matrix of a graph
G. There is no command for the Laplacian or the normalized Laplacian. So
we have defined the normalized Laplacian matrix in the following procedure:

lap := proc(G)

local n,vert,k,seq_degree,M,a,b:

n := nops(vertices(G)):

vert := convert(vertices(G),list):

seq_degree := seq(vdegree(vert[k],G),k=1..n):

M:=Matrix(1..n,1..n);

for a from 1 to n do

for b from 1 to n do

if evalb( vert[a] in neighbors(vert[b],G) ) then

M[a,b] := -1/sqrt(seq_degree[a]*seq_degree[b]):

end if:

od:

M[a,a] := 1;

od:

return M:

end:

In the following we will describe a procedure for calculating the maximal size
of an independent set of a graph G, i.e. for α(G). The idea is that we go over
all subsets of the vertices and then check if they build an independent set.
If this is so then we compare this size of the independent set with the best
possible size by now and update this value. We note that the complexity is
something like 2n(G). So one should only try small graphs (with less than 10
vertices or so).

indep := proc(G)

local n, alpha, A, z, test_vert, test_vect, l:

n := nops(vertices(G)):
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alpha := 0:

A := adjacency(G):

for z from 1 to 2^n-1 do

test_vert := {}:

test_vect := vector(n,0):

for l from 1 to n do

if(z mod 2^l > 2^(l-1)-1) then

test_vert := test_vert union {l}: test_vect[l]:=1

end if:

od:

if evalb(multiply(test_vect,A,test_vect)=0

and nops(test_vert)>alpha) then

alpha := nops(test_vert):

end if:

od:

return alpha:

end proc

For verifying the statement

λ(G) ≥ α(G)

n

for all graphs on n vertices we can use the following procedure. We note that
this procedure uses the the procedure lap(G) and indep(G). So this test is
only practical for small n.

poss_edg := {}:

for j from 1 to n do

for k from j+1 to n do

poss_edg := poss_edg union {{j,k}}:

od:

od:

poss_edg;

for z from 0 to 2^e-1 do

G := void(n):

for l from 1 to e do

if(z mod 2^l > 2^(l-1)-1) then addedge(poss_edg[l],G) end if:

od:

if(nops(components(G))=1) then

eig := evalf(Eigenvals(evalm(lap(G)))):
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lambda := eig[n]-1:#max(1-eig[2], eig[n]-1):

alpha := indep(G):

if evalb(lambda<alpha/n) then

print(draw(G)):

end if:

end if:

od:
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